References
- Kim WH, Lillehoj HS, Gay CG. Using genomics to identify novel antimicrobials. Rev Sci Tech 2016;35:95-103. https://doi.org/10.20506/rst.35.1.2420
- Durr UH, Sudheendra U, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 2006;1758:1408-25. https://doi.org/10.1016/j.bbamem.2006.03.030
- Papagianni M. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 2003;21:465-99. https://doi.org/10.1016/S0734-9750(03)00077-6
- Sitaram N, Nagaraj R. Host-defense antimicrobial peptides: importance of structure for activity. Curr Pharm Des 2002;8:727-42. https://doi.org/10.2174/1381612023395358
- Lee SH, Lillehoj HS, Tuo W, Murphy CA, Hong YH, Lillehoj EP. Parasiticidal activity of a novel synthetic peptide from the core alpha-helical region of NK-lysin. Vet Parasitol 2013;197:113-21. https://doi.org/10.1016/j.vetpar.2013.04.020
- Reddy K, Yedery R, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004;24:536-47. https://doi.org/10.1016/j.ijantimicag.2004.09.005
- Bals R, Wilson J. Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 2003;60:711-20. https://doi.org/10.1007/s00018-003-2186-9
- Beisswenger C, Bals R. Antimicrobial peptides in lung inflammation. Chem Immunol Allergy 2005;86:55-71. https://doi.org/10.1159/000086651
- Engstrom Y. Induction and regulation of antimicrobial peptides in Drosophila. Dev Comp Immunol 1999;23:345-58. https://doi.org/10.1016/S0145-305X(99)00016-6
- Hetru C, Troler L, Hoffmann JA. Drosxophila melanogaster antimicrobial defense. J Infect Dis 2003;187:S327-S34. https://doi.org/10.1086/374758
- Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 1999;11:23-7. https://doi.org/10.1016/S0952-7915(99)80005-3
- Krause A, Sillard R, Kleemeier B, et al. Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci 2003;12:143-52. https://doi.org/10.1110/ps.0213603
- Lynn DJ, Lloyd AT, O'Farrelly C. In silico identification of components of the Toll-like receptor (TLR) signaling pathway in clustered chicken expressed sequence tags (ESTs). Vet Immunol Immunopathol 2003;93:177-84. https://doi.org/10.1016/S0165-2427(03)00058-8
- Sang Y, Ramanathan B, Minton JE, Ross CR, Blecha F. Porcine liver-expressed antimicrobial peptides, hepcidin and LEAP-2: cloning and induction by bacterial infection. Dev Comp Immunol 2006;30:357-66. https://doi.org/10.1016/j.dci.2005.06.004
- Townes CL, Michailidis G, Hall J. The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun 2009;387:500-3. https://doi.org/10.1016/j.bbrc.2009.07.046
- Harwig SS, Waring A, Yang HJ, Cho Y, Tan L, Lehrer RI. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur J Biochem 1996;240:352-7. https://doi.org/10.1111/j.1432-1033.1996.0352h.x
- Ishige T, Hara H, Hirano T, Kono T, Hanzawa K. Characterization and expression of non-polymorphic liver expressed antimicrobial peptide 2: LEAP-2 in the Japanese quail, Coturnix japonica. Anim Sci J 2016;87:1182-7. https://doi.org/10.1111/asj.12643
- Townes CL, Michailidis G, Nile CJ, Hall J. Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect Immun 2004;72:6987-93. https://doi.org/10.1128/IAI.72.12.6987-6993.2004
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{-{\Delta}{\Delta}CT}$ method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 - Zhang Y-A, Zou J, Chang C-I, Secombes CJ. Discovery and characterization of two types of liver-expressed antimicrobial peptide 2 (LEAP-2) genes in rainbow trout. Vet Immunol Immunopathol 2004;101:259-69. https://doi.org/10.1016/j.vetimm.2004.05.005
- Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005;3:238-50. https://doi.org/10.1038/nrmicro1098
- Kalfa V, Jia H, Kunkle R, McCray P, Tack B, Brogden K. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob Agents Chemother 2001;45:3256-61. https://doi.org/10.1128/AAC.45.11.3256-3261.2001
- Betz SF. Disulfide bonds and the stability of globular proteins. Protein Sci 1993;2:1551-8. https://doi.org/10.1002/pro.5560021002
- Creighton TE. Disulphide bonds and protein stability. BioEssays 1988;8:57-63. https://doi.org/10.1002/bies.950080204
- Sevier CS, Kaiser CA. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 2002;3:836-47. https://doi.org/10.1038/nrm954
- Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry 2011;50:8005-17. https://doi.org/10.1021/bi201043j
-
Yang M, Zhang C, Zhang MZ, Zhang S. Novel synthetic analogues of avian
${\beta}$ -defensin-12: the role of charge, hydrophobicity, and disulfide bridges in biological functions. BMC Microbiol 2017;17:43. https://doi.org/10.1186/s12866-017-0959-9 - Hocquellet A, Odaert B, Cabanne C, et al. Structure-activity relationship of human liver-expressed antimicrobial peptide 2. Peptides 2010;31:58-66. https://doi.org/10.1016/j.peptides.2009.10.006
- Etmektedir, SII. The increase in LEAP-2 mRNA suggests a synergistic probiotics-doxycycline interaction in chickens. Turk J Immunol 2017;5:5-12.
- Lynn DJ, Higgs R, Gaines S, et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 2004;56:170-7. https://doi.org/10.1007/s00251-004-0675-0
- Michailidis G. Expression of chicken LEAP-2 in the reproductive organs and embryos and in response to Salmonella enterica infection. Vet Res Commun 2010;34:459-71. https://doi.org/10.1007/s11259-010-9420-3
- Parachin NS, Mulder KC, Viana AAB, Dias SC, Franco OL. Expression systems for heterologous production of antimicrobial peptides. Peptides 2012;38:446-56. https://doi.org/10.1016/j.peptides.2012.09.020
- Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 2011;80:260-7. https://doi.org/10.1016/j.pep.2011.08.001
- Patrickios CS, Yamasaki EN. Polypeptide amino acid composition and isoelectric point ii. comparison between experiment and theory. Anal Biochem 1995;231:82-91. https://doi.org/10.1006/abio.1995.1506