DOI QR코드

DOI QR Code

Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Iqbal (Department of Basic and Applied Sciences, Punjabi University)
  • 투고 : 2019.03.02
  • 심사 : 2019.03.22
  • 발행 : 2019.06.25

초록

The present research deals in two dimensional (2D) transversely isotropic magneto generalized thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are calculated in transformed domain and further calculated in the physical domain numerically. The effect of two temperature are depicted graphically on the resulting quantities.

키워드

참고문헌

  1. Abd-Alla, A.E.N.N. and Alshaikh, F. (2015), The Mathematical Model of Reflection of Plane Waves in a Transversely Isotropic Magneto-Thermoelastic Medium under Rotation, in New Developments in Pure and Applied Mathematics, 282-289.
  2. Ailawalia, P., Kumar, S. and Pathania, D. (2010), "Effect of rotation in a generalized thermoelastic medium with two temperature under hydrostatic initial stress and gravity", Multidis. Model. Mater. Struct., 6(2), 185-205. https://doi.org/10.1108/15736101011067984
  3. Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  4. Atwa, S.Y. (2014), "Generalized magneto-thermoelasticity with two temperature and initial stress under Green-Naghdi theory", Appl. Math. Model., 38(21-22), 5217-5230. https://doi.org/10.1016/j.apm.2014.04.023.
  5. Bijarnia, R. and Singh, B. (2016), "Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids", Int. J. Appl. Mech. Eng., 21(1), 285-301. https://doi.org/10.1515/ijame-2016-0018.
  6. Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Global J. Pure Appl. Math., 13(10), 7505-7527.
  7. Dhaliwal, R. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India.
  8. Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electrom. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
  9. Ezzat, M. and AI-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
  10. Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Model., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018.
  11. Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189.
  12. Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177.
  13. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
  14. Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magnetothermoelasticity with fractional order dual-phase-lag heat transfer", Nucl. Eng. Des., 252, 267-277. https://doi.org/10.1016/j.nucengdes.2012.06.012.
  15. Ezzat, M.A., Karamany, A.S. and El-Bary, A.A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539.
  16. Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stresses, 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
  17. Hassan, M., Marin, M., Alsharif, A. and Ellahi, R. (2018), "Convective heat transfer flow of nanofluid in a porous medium over wavy surface", Phys. Lett. A, 382(38), 2749-2753. https://doi.org/10.1016/j.physleta.2018.06.026.
  18. Jr., D.S., Goncalves, K.A. and Telles, J.C. (2015), "Elastodynamic analysis by a frequency-domain FEMBEM iterative coupling procedure", Coupled Syst. Mech., 4(3), 263-277. https://doi.org/10.12989/csm.2015.4.3.263.
  19. Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385.
  20. Kumar, R., Kaushal, P. and Sharma, R. (2018), "Transversely isotropic magneto-visco thermoelastic medium with vacuum and without energy dissipation", J. Solid Mech., 10(2), 416-434.
  21. Kumar, R., Sharma, N. and Lata, A.P. (2016), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57(1), 91-103. http://dx.doi.org/10.12989/sem.2016.57.1.091.
  22. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061.
  23. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, A.S. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupled Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317.
  24. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  25. Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupled Syst. Mech., 8(1), 55-70. https://doi.org/10.12989/csm.2019.8.1.055.
  26. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
  27. Lord, H.W. and Shulman, A.Y. (1967), "The generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  28. Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996.
  29. Marin, M. (1997), "On weak solutions in elasticity of dipolar bodies with voids", J. Comput. Appl. Math., 82(1-2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2
  30. Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Ciencias Matematicas, 16(2), 101-109.
  31. Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Prob. Eng., 1-8.
  32. Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccan., 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2.
  33. Marin, M. and O chsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum. Mech. Thermodyn., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7.
  34. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 1-7. http://dx.doi.org/10.1155/2013/583464.
  35. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708.
  36. Shahani, A.R. and Torki, H.S. (2018), "Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity", Continuum Mech. Thermodyn., 30(3), 509-527. https://doi.org/10.1007/s00161-017-0618-2.
  37. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
  38. Singh, B. and Yadav, A.K. (2012), "Plane waves in a transversely isotropic rotating magnetothermoelastic medium", J. Eng. Phys. Thermophys., 85(5), 1226-1232. https://doi.org/10.1007/s10891-012-0765-z.
  39. Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar, Switzerland.
  40. Vinyas, M. and Kattimani, S.C. (2017), "Multiphysics response of magneto-electro-elastic beams in thermomechanical environment", Coupled Syst. Mech., 6(3), 351-367. https://doi.org/10.12989/csm.2017.6.3.351.

피인용 문헌

  1. Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory vol.8, pp.6, 2019, https://doi.org/10.12989/csm.2019.8.6.501
  2. Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields vol.10, pp.1, 2021, https://doi.org/10.12989/csm.2021.10.1.039