DOI QR코드

DOI QR Code

Simulation of the Debris Flow Diffusion in the Mountainous Watershed Using 3D Terrain Data

3D 지형데이터를 활용한 산지유역 토석류 흐름 모의에 관한 연구

  • Oh, Chae-Yeon (Graduate School of Disaster Prevention, Kangwon National University) ;
  • Jun, Kye-Won (Graduate School of Disaster Prevention, Kangwon National University)
  • 오채연 (강원대학교 방재전문대학원) ;
  • 전계원 (강원대학교 방재전문대학원)
  • Received : 2019.09.09
  • Accepted : 2019.09.24
  • Published : 2019.09.30

Abstract

This study selected the national park area of Mt. Seorak in Inje-gun, Gangwon-do, where a lot of debris flow occurred due to the heavy rainfall and conducted a field survey. In addition, topographic spatial data were constructed using the GIS technique to analyze watershed characteristics. For the construction of terrain data after the disaster, the debris flow occurrence section was scanned and the 3D topographic data was constructed using the terrestrial LiDAR. LiDAR terrain data are compared to digital maps(before disaster) to assess precision and topographic data before and after the disaster were compared and analyzed. Debris flow diffusion area was calculated using FLO-2D model and compared debris flow occurred section.

본 연구는 집중호우로 인해 많은 토석류가 발생한 강원도 인제군에 속한 설악산 국립공원 일대를 선정하고 현장 조사를 실시하였다. 유역의 특징을 분석하기 위해 GIS 기법을 이용하여 지형 공간자료를 구축하였으며, 재해 발생 이후의 지형자료 구축을 위하여 지상 LiDAR를 활용하여 토석류 발생 구간을 스캔하고 3D 지형자료를 생성하였다. LiDAR 지형자료는 기존 수치 지도(재해발생 이전)와 비교하여 정밀도를 평가하고 재해 발생 전·후의 지형자료를 비교 분석하였다. 그리고 FLO-2D 모형을 활용하여 토석류 확산면적을 산정하고 실제 토석류 발생 구간과 비교 분석하였다.

Keywords

References

  1. FLO-2D (2009). FLO-2D Reference Manual. http://www.flo-2d.com.
  2. Jun, K. W. and Oh, C. Y. (2016). Study on the Terrestrial LiDAR Topographic Data Construction for Mountainous Disaster Hazard Analysis. Jounal of the KOSOS. 31(1): 105-110.
  3. Kasaia, M., Ikeda, M., Asahina, T., and Fujisawa, K. (2009). LiDAR-derived DEM Evaluation of Deep-seated Landslides in a Steep and Rocky Region of Japan. Geomorphology. 113: 57-69. https://doi.org/10.1016/j.geomorph.2009.06.004
  4. Kim, S. G., Paik, J. C., and Kim, K. S. (2013). Run-out Modeling of Debris Flows in MT. Umyeon using FLO-2D. Journal of the Korean Society of Civil Engineers. 33(3): 965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  5. O'Brien, J. S. Julien, P. Y., and Fullerton, W. T. (1993). Two-dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering. 119(2): 244-261 https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  6. O'Brien, J. S. and Julien, P. Y. (1998). Laboratory Analysis of Mudflow Properties. Journal of Hydraulics Engineering. 114(8): 877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  7. Park, S. J. (2014). Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability. Journal of the Korean Geographical Society. 49(5): 656-674.
  8. Park, S. D., Yune, C. Y., and Paik, J. C. (2010). Debris flow and Sediment Glossary of Terms. Research Center for River Flow Impingement and Debris Flow.
  9. Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F., (2006). Erosion Processes in Steep Terrain-Truths, Myths, and Uncertainties Related to Forest Management in Southeast Asia. Forest Ecology and Management. 224: 199-225. https://doi.org/10.1016/j.foreco.2005.12.019
  10. Tangestani, M. H. (2004). Landslide Susceptibility Mapping Using the Fuzzy Gamma Approach in a GIS, Kakan Catchment Area, Southwest Iran. Australian Journal of Earth Science. 51: 439-450. https://doi.org/10.1111/j.1400-0952.2004.01068.x
  11. Wie, G. J., Kim, E. Y., Kang, I. G., and Kim, C. W. (2009). A Development of lidar data Filtering for Contour Generation. Jounal of the Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography. 27(4): 469-476.