DOI QR코드

DOI QR Code

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions

유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토

  • Yoo, Hyung Ju (Department of Civil Engineering, Hongik University) ;
  • Kim, Dong Hyun (Department of Civil Engineering, Hongik University) ;
  • Maeng, Seung Jin (Department of Agricultural and Rural Engineering, Chungbuk University) ;
  • Lee, Seung Oh (Department of Civil Engineering, Hongik University)
  • Received : 2019.11.10
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 국지성 집중호우의 피해가 증가함에 따라 초기 우수에 대응할 수 있는 시설물 설치가 필요한 실정이다. 이를 위해, 빗물을 직접 유출하지 않고 저류 시키는 저영향 개발(Low Impact Development)기법을 적용한 시설물 설계 및 수치모형을 이용한 유출저감효과 검토에 관한 연구가 많이 진행되어 왔다. 그러나 대부분의 연구는 유출저감효과에 대한 검토만 수행된 반면, 시설물에 유입되는 유량에 의한 흐름특성 변화 검토 및 안정성 검토에 관한 연구는 미비한 실정이다. 이에 본 연구에서는 LID 기법이 많이 적용되고 있는 회전교차로를 대상으로 하여, 회전교차로 내의 우수저류조의 관망시스템의 안정성 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 우수저류조의 최적의 설계방안 도출을 위하여 우수저류조의 수를 증가하여 용량증가에 따른 유속과 동압의 변화를 검토하고 설계기준과 비교하였다. 우수저류조의 제원 및 유입유량은 선행연구에서 제시된 값을 적용하여 수치모의를 수행한 결과, 유속은 저류조 설치개소 수가 증가할수록 빨라지는 것을 확인하였고, 대부분 설계기준 범위 안에 유속이 형성되는 것을 확인하였다. 다만 추가 저류조가 3개 이상일 경우는 추가저류조관에서 유속이 3.44 m/s가 발생하여 설계유속의 허용범위를 초과하였고, 유속의 증가율도 일정해지는 것으로 나타났다. 난류강도 및 바닥전단력 비교의 경우, 저류조 설치 개소수가 증가함에 따라 바닥전단력이 한계소류력보다 크게 나타나 유입토사의 침전은 발생하지 않을 것으로 예상되나 난류강도의 크기가 작아져 플록(Floc)형성으로 인한 토사 침전이 발생할 수 있음을 고려해야한다. 최종적으로 유속을 이용한 동압 산정 결과를 우수관 설계에 일반적으로 사용되는 압력관의 허용내압과 비교하였을 경우, 동압이 허용내압보다 작게 나타났다. 이를 통하여 본 연구에서 제안한 우수저류조 제원으로 설계할 경우 추가 저류조를 2개까지 설치하는 것이 가장 적합한 것으로 나타났다. 이는 저류조를 계속하여 설치하게 되면 배수가 원활해져 관내 유속이 빨라지고, 유속증가로 인하여 관의 마모손상 등의 문제가 일어날 수 있기 때문이다. 그러나 본 연구는 저류조의 제원 및 우수의 유입량을 가정하였고, 단순히 저류조를 추가하여 저류조 설계방안을 도출한 한계점이 있어 향후에는 다양한 저류조 형태 및 우수유입 시나리오를 적용하여 검토한다면 보다 효율적인 설계방안 도출이 가능할 것으로 기대된다.

Keywords

References

  1. Choi, I. H. and Kim, J. W. (2016). A Study on Effects of Salinity on Deposition and Erosion of Cohesive Sediments. Journal of the Korean Society of Hazard Mitigation. 16: 317-324. https://doi.org/10.9798/KOSHAM.2016.16.5.317
  2. Guo, Y. and Adams, B. J. (1998). Hydrologic Analysis of Urban Catchments with Event-based Probabilistic Models: Runoff Volume. Water Resources Research. 34(12): 3421-3431. https://doi.org/10.1029/98WR02449
  3. Jia, H., Lu, Y., Shaw, L. Y., and Chen, Y. (2012). Planning of LID-BMPs for Urban Runoff Control: The Case of Beijing Olympic Village. Separation and Purification Technology. 84: 112-119. https://doi.org/10.1016/j.seppur.2011.04.026
  4. KEI (2014). LID Implementation Scheme for Environmental Impact Assessment.
  5. Kim, J. H., Lee, C. Y., and Joo, J. G. (2017). Evaluation of the Effect of Low Impact Development on the Subbasin-based Stormwater Reduction. Journal of the Korean Society of Hazard Mitigation. 17: 523-532. https://doi.org/10.9798/KOSHAM.2017.17.6.523
  6. Korea Land & Housing Corporation (LH). (2010). A Study on the Feasibility Study of the Maximum Flow Rate Criterion for the Design of the Minimum Cost Superior Pipe Network.
  7. Lee, J. M. (2019). Stability Analysis of Steep-Sloped Sewer Manhole Using Observation Data and Numerical Analysis Model. Journal of the Korean Society of Hazard Mitigation. 19: 193-203. https://doi.org/10.9798/KOSHAM.2019.19.4.193
  8. Liao, Z. L., Zhang, G. Q., Wu, Z. H., He, Y., and Chen, H. (2015). Combined Sewer Overflow Control with LID based on SWMM: An Example in Shanghai, China. Water Science and Technology. 71(8): 1136-1142. https://doi.org/10.2166/wst.2015.076
  9. Luan, Q., Fu, X., Song, C., Wang, H., Liu, J., and Wang, Y. (2017). Runoff Effect Evaluation of LID through SWMM in Typical Mountainous, Low-lying Urban Areas: A Case Study in China. Water. 9(6): 439. https://doi.org/10.3390/w9060439
  10. Manual, F. U. (2011). Flow3D User Manual, v9. 4.2. Flow Science. Inc.. Santa Fe. NM.
  11. ME (2015). Standard of Sewer Facility. ME.
  12. ME (2017). Standard of Sewer Design. ME.
  13. MOLIT (2016). Development of Environment Friendly Early Rainwater Removal and Rainwater Storage Facility. MOLIT.
  14. Son, M. W. (2011). Research Trends on the Simulation of Cohesive Sediment. Water for future. 44(3): 51-58.
  15. Vanoni, V. A. (2006). Sedimentation Engineering. (Ed.). American Society of Civil Engineers.
  16. Wang, W. L., Li, J. Q., Gong, Y. W., Zhu, M. J., and Zhang, Q. K. (2012). LID Stormwater Control Effect Simulation based on SWMM. China Water & Wastewater. 28(21): 42-44.
  17. Yoon, E. H., Park, J. K., Shin, H. S., and Lee, J. H. (2017). Establishment of LID Demonstration Complex Monitoring System and Analysis of Storage Efficiency. Journal of the Korean Society of Hazard Mitigation. 17: 345-353. https://doi.org/10.9798/KOSHAM.2017.17.5.345