Acknowledgement
Supported by : National Natural Science Foundation of China, Beijing Municipal Institutions
References
- Bing, H. and Ma, W. (2011), "Laboratory investigation of the freezing point of saline soil", Cold Reg. Sci. Technol., 67(1), 79-88. https://doi.org/10.1016/j.coldregions.2011.02.008.
- Chen, X.S. (1996), "A "time-space" related design method of freezing wall", Coal Sci. Eng., 2(2), 63-66.
- Dong, Y., McCartney, J.S. and Ning, L. (2015), "Critical review of thermal conductivity model for unsaturated soils", Geotech. Geol. Eng., 33(2), 207-221. https://doi.org/10.1007/s10706-015-9843-2.
- Foriero, A. and Ladanyi, B. (1995), "FEM assessment of largestrain thaw consolidation", J. Geotech. Eng., 121(2), 126-138. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(126).
- Grechishchev, S.E., Instanes, A., Sheshin, J.B., Pavlov, A.V. and Grechishcheva, O.V. (2001), "Laboratory investigation of the freezing point of oil-polluted soils", Cold Reg. Sci. Technol., 32(2-3), 183-189. https://doi.org/10.1016/S0165-232X(01)00030-1.
- Guan, H., Wang, D., Ma, W., Mu, Y.H., Wen, Z., Gu, T.X. and Wang, Y.T. (2014), "Study on the freezing characteristics of silty clay under high loading conditions", Cold Reg. Sci. Technol., 110, 26-31. https://doi.org/10.1016/j.coldregions.2014.10.005.
- Hildebrand, E.E. (1983), "Thaw settlement and ground temperature model for highway design in permafrost areas", Proceedings of the 4th International Conference on Permafrost, Alaska, U.S.A., July. https://doi.org/10.1007/s12205-015-0419-8.
- Karstunen, M., Wiltafsky, C., Krenn, H., Scharinger, F. and Schweiger, H.F. (2006), "Modelling the behaviour of an embankment on soft clay with different constitutive models", Int. J. Numer. Anal. Meth. Geomech., 30(10), 953-982. https://doi.org/10.1002/nag.507.
- Kozlowski, T. (2009), "Some factors affecting supercooling and the equilibrium freezing point in soil-water system", Cold Reg. Sci. Technol., 59(1), 25-33. https://doi.org/10.1016/j.coldregions.2009.05.009.
- Ma, W., Fang, L.L. and Qi J.L. (2011), "Methodology of study on freeze-thaw cycling induced changes in engineering properties of soils", Proceedings of the 9th International Symposium on Permafrost Engineering, Mirny, Yakutia, Russia, September.
- Marwan, A., Zhou, M., Abdelrehim, M.Z. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Comput. Geotech., 75, 112-125. https://doi.org/10.1016/j.compgeo.2016.01.004.
- Morgenstern, N.R. and Nixon, J.F. (1971), "One-dimensional consolidation of thawing soils", Can. Geotech. J., 8(4), 558-565. https://doi.org/10.1139/t71-057.
- Nelson, P.P. (2016), "A framework for the future of urban underground engineering", Tunn. Undergr. Sp. Technol., 55, 32-39. https://doi.org/10.1016/j.tust.2015.10.023.
- Nelson, R.A., Luscher, U., Rooney J.W. and Stramler, A.A. (1983), "Thaw strain data and thaw settlement predictions for Alaskan soils", Proceedings of the 4th International Conference on Permafrost, Alaska, U.S.A., July.
- Nixon, J.F. and Morgenstern, N.R. (1973), "Practical extensions to a theory of consolidation for thawing soils", Proceedings of the 2nd International Conference on Permafrost, Yakutsk, Russia, July.
- Panday, S. and Corapcioglu, M.Y. (1995), "Solution and evaluation of permafrost thaw-subsidence model", J. Eng. Mech., 121(3), 460-469. https://doi.org/10.1061/(asce)0733-9399(1995)121:3(460).
- Park, D. (2016), "Rate of softening and sensitivity for weakly cemented sensitive clays", Geomech. Eng., 10(6), 827-836. https://doi.org/10.12989/gae.2016.10.6.827.
- Ponomarev, V.D., Sorokin, V.A. and Fedoseev, Y.G. (1988), "Compressibility of sandy permafrost during thawing", Soil Mech. Found. Eng., 25(3), 124-128. https://doi.org/10.1007/BF01709717.
- Qi, J.L., Pieter, A.V. and Cheng, G.D. (2006), "A review of the influence of freeze-thaw cycles on soil geotechnical properties", Permafrost Periglac., 17, 245-252. https://doi.org/10.1002/ppp.559.
- Qi, J.L., Yao, X.L. and Yu, F. (2013), "Consolidation of thawing permafrost considering phase change", KSCE J. Civ. Eng., 17(6), 1293-1301. https://doi.org/10.1007/s12205-013-0240-1.
- Quang, N.D. and Giao, P.H. (2014), "Improvement of soft clay at a site in the Mekong Delta by vacuum preloading", Geomech. Eng., 6(5), 419-436. https://doi.org/10.12989/gae.2014.6.5.419.
- Shear, D.L., Olsen, H.W. and Nelson, K.R. (1993), Effects of Desiccation on the Hydraulic Conductivity versus Void Ratio Relationship for a Natural Clay, Transportation Research Record, NRC National Academy Press, Washington, D.C., U.S.A.
- Shoop, S. and Affleck, R. (2005), "Cap plasticity model for thawing soil. calibration of constitutive models", J. Cold Reg. Eng., 3, 139-150. https://doi.org/10.1061/40786(165)8.
- Sykes, J.F., Lennox, W.C. and Charlwood, R.G. (1974), "Finite element permafrost thaw settlement model", J. Geotech. Eng. Div., 100(11), 1185-1201. https://doi.org/10.1061/AJGEB6.0000118
- Tengborg, P. and Struk, R. (2016), "Development of the use of underground space in Sweden", Tunn. Undergr. Sp. Technol., 55, 339-341. https://doi.org/10.1016/j.tust.2016.01.002.
- Tsytovich, N.A. (1975), Mechanics of Frozen Soil, McGraw-Hill, New York, U.S.A.
- Vitel, M., Rouabhi, A., Tijani, M. and Guerin, F. (2016), "Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone", Comput. Geotech., 75, 80-92. https://doi.org/10.1016/j.compgeo.2016.01.024.
- Von Wolffersdorff, P.A. (1996), "A hypoplastic relation for granular materials with a predefined limit state surface", Mech. Cohes.-Frict. Mater. Struct., 1(3), 251-271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3.
- Wang, D., Ma, W., Chang X.X. and Wang, A.G. (2005), "Study on the resistance to deformation of artificially frozen soil in deep alluvium", Cold Reg. Sci. Technol., 42(3), 194-200. https://doi.org/10.1016/j.coldregions.2005.01.006.
- Wang, S.H. and Liu, F.Y. (2015), "A hypoplasticity-based method for estimating thaw consolidation of frozen sand", Geotech. Geol. Eng., 33(5), 1307-1320. https://doi.org/10.1007/s10706-015-9902-8.
- Wang, S.H., Qi, J.L., Yu, F. and Liu, F.Y. (2016a), "A novel modeling of settlement of foundations in permafrost regions", Geomech. Eng., 10(2), 225-245. https://doi.org/10.12989/gae.2016.10.2.225.
- Wang, W.L., Wang, L.M., Yu, F. and Wang, Q. (2016b), "One dimensional thaw consolidation behaviors with periodical thermal boundaries", KSCE J. Civ. Eng., 20(4), 1250-1258. https://doi.org/10.1007/s12205-015-0419-8
- Wang, S.F., Yang, P., Liu, G.R. and Fan, W.H. (2016c), "Micro pore change and fractal characteristics of artificial freeze thaw soft clay", Chin. J. Geotech. Eng., 38(7), 1254-1261. https://doi.org/10.11779/CJGE201607012.
- Wang, S.H., Wang, Q.Z., Qi, J.L. and Liu, F.Y. (2018), "Experimental study on freezing point of saline soft clay after freeze-thaw", Geomech. Eng., 15(4), 997-1004. https://doi.org/10.12989/gae.2018.15.4.997.
- Watanabe, K. and Wake, T. (2008), "Hydraulic conductivity in frozen unsaturated soil", Proceedings of the 9th International Conference on Permafrost, Alaska, U.S.A., June-July.
- Webb, P.A. (2001), An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data, Micromeritics Instrument Corporation, Norcross, Georgia, U.S.A.
- Xu, J., Wang, Z., Ren, J. and Yuan, J. (2018), "Mechanism of shear strength deterioration of loess during freeze-thaw cycling", Geomech. Eng., 14(4), 307-314. https://doi.org/10.12989/gae.2018.14.4.307.
- Xu, X.Z., Wang, J.C. and Zhang, L.X. (2001), Frozen Soil Physics, Science Press, Beijing, China.
- Yao, X.L., Qi, J.L. and Wu, W. (2012), "Three dimensional analysis of large strain thaw consolidation in permafrost", Acta Geotech., 7(3), 193-202. https://doi.org/10.1007/s11440-012-0162-y.
- Yao, X.L., Qi, J.L., Liu, M.X. and Yu, F. (2016), "Pore water pressure distribution and dissipation during thaw consolidation", Transport Porous Med., 116(2), 1-17. https://doi.org/10.1007/s11242-016-0782-z.
- Yazdani, H. and Toufigh, M.M. (2012), "Nonlinear consolidation of soft clays subjected to cyclic loading-Part II: Verification and application", Geomech. Eng., 4(4), 243-249. https://doi.org/10.12989/gae.2012.4.4.243.
- Yildiz, A. and Uysal, F. (2015), "Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs", Geomech. Eng., 8(5), 707-726. https://doi.org/10.12989/gae.2015.8.5.707.
- Zhang, L. and Xu, X. (1994), "The influence of freezing-thawing process on the unfrozen water content of frozen saline soil", Proceedings of the 7th International Symposium on Ground Freezing, Nancy, France, October.