DOI QR코드

DOI QR Code

Effect of palm oil on the basic geotechnical properties of kaolin

  • Received : 2018.06.02
  • Accepted : 2019.05.14
  • Published : 2019.06.10

Abstract

This paper presents an experimental study to evaluate the effect of palm oil on the selected basic physical-chemical and geotechnical properties of kaolin. The experimental findings are further compared with literature outcomes investigating similar properties of fine grained soils subjected to contamination by different types of oils. To this end, palm oil was mixed with oven dried kaolin samples-aiding oil's interaction (coating) with dry particles first, in anticipation to emphasize the effect of oil on the properties of kaolin, which would be difficult to achieve otherwise. Oil content was limited to 40% by dry weight of kaolin, supplemented at intervals of 10% from clean kaolin samples. Observations highlight physical particle-to-particle bonding resulting in the formation of pseudo-silt sized clusters due to palm oil's interaction as evinced in the particle size distribution and SEM micrographs. These clusters, aided by water repellency property of the oil coating the kaolin particles, was analyzed to show notable variations in kaolin's consistency-measured as liquid and plastic limits. Furthermore, results from compaction tests indicates contribution of oil's viscosity on the compaction behavior of kaolin - showing decrease in the maximum dry unit weight (${\gamma}_{d,max}$) and optimum moisture content ($w_{opt}$) values with increasing oil contents, while their decrease rates were directly and inversely proportional in ${\gamma}_{d,max}$ and $w_{opt}$ values with oil contents respectively. Comparative study in similar terms, also validates this lower and higher decrease rates in ${\gamma}_{d,max}$ and $w_{opt}$ values of the fine grained soils respectively, when subjected to contamination by oil with higher viscosity.

Keywords

Acknowledgement

Supported by : Monash University Malaysia

References

  1. Abousnina, R.M., Manalo, A., Shiau, J. and Lokuge, W. (2015), "Effects of light crude oil contamination on the physical and mechanical properties of fine sand", Soil Sediment Contamin. Int. J., 24(8), 833-845. https://doi.org/10.1080/15320383.2015.1058338.
  2. Al-Sanad, H.A., Eid, W.K. and Ismael, N.F. (1995), "Geotechnical properties of oil-contaminated Kuwaiti sand", J. Geotech. Eng., 121(5), 407-412. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(407).
  3. Bian, H., Liu, S., Cai, G. and Chu, Y. (2016), "Influence of diesel pollution on the physical properties of soils", Jap. Geotech. Soc. Special Publ., 2(14), 552-555. https://doi.org/10.3208/jgssp.CHN-16.
  4. Brunauer, S., Emmett, P.H. and Teller, E. (1938), "Adsorption of gases in multimolecular layers", J. Amer. Chem. Soc., 60(2), 309-319. https://doi.org/10.1021/ja01269a023.
  5. Chang, I. and Cho, G. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.
  6. de Souza, C.M.P., dos Santos, D.P.G., Soares, B.S.A., de Santana, C.P., Apolinario, A.C., da Cunha, E.V.L., Damasceno, B.P.G., da Veiga Jr, V.F., Santana, D.P. and da Silva, J.A. (2014), "Physicochemical characterization and in vitro evaluation of the photoprotective activity of the oil from Opuntia ficus-indica (L.) Mill. Seeds", Afr. J. Pharm. Pharmacol., 8(33), 824-831. https://doi.org/10.5897/AJPP2014.4012.
  7. Delage, P., Audiguier, M., Cui, Y. and Howat, M.D. (1996), "Microstructure of a compacted silt", Can. Geotech. J., 33(1), 150-158. https://doi.org/10.1139/t96-030.
  8. Doerr, S.H., Shakesby, R.A. and Walsh, R.P.D. (2000), "Soil water repellency: its causes characteristics & hydro-geomorphological significance", Earth-Sci. Rev., 51(1-4), 33-65. https://doi.org/10.1016/S0012-8252(00)00011-8.
  9. FAO (2016). World Food Programme - 2015, The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress, Food and Agriculture Organization Publications, Rome, Italy. http://www.fao.org/3/a-i4646e.pdf.
  10. Goh, S.H., Choo, Y.M. and Ong, S.H. (1985), "Minor constituents of palm oil", J. Amer. Oil Chem. Soc., 62(2), 237-240. https://doi.org/10.1007/BF02541384.
  11. Holt, J.B., Cutler, I.B. and Wadsworth, M.E. (1962), "Rate of thermal dehydration of kaolinite in vacuum", J. Amer. Ceramic Soc., 45(3), 133-136. https://doi.org/10.1111/j.1151-2916.1962.tb11101.x.
  12. Ijimdiya, T.S. (2012), "Effect of oil contamination on particle size distribution and plasticity characteristics of lateritic soil", Adv. Mater. Res., 367, 19-25. https://doi.org/10.4028/www.scientific.net/AMR.367.19.
  13. Izdebska-Mucha, D., Trzcinsk, J., Zbik, M.S. and Frost, R.L. (2011), "Influence of hydrocarbon contamination on clay soil microstructure", Clay Miner., 46(1), 47-58. https://doi.org/10.1180/claymin.2011.046.1.47.
  14. Kermani, M. and Ebadi, T. (2012), "The effect of oil contamination on the geotechnical properties of fine-grained soils", Soil Sediment Contamin. Int. J., 21(5), 655-671. https://doi.org/10.1080/15320383.2012.672486.
  15. Khamehchiyan, M., Charkhabi, A.H. and Tajik, M. (2007), "Effects of crude oil contamination on geotechnical properties of clayey and sandy soils", Eng. Geol., 89(3-4), 220-229. https://doi.org/10.1016/j.enggeo.2006.10.009.
  16. Khosravi, E., Ghasemzadeh, H., Sabour, M.R. and Yazdani, H. (2013), "Geotechnical properties of gas oil-contaminated kaolinite", Eng. Geol., 166, 11-16. https://doi.org/10.1016/j.enggeo.2013.08.004
  17. Lai, O.M., Tan, C.P. and Akoh, C.C. (2015), Palm Oil Production, Processing, Characterization, and Uses, Academic and AOCS Press, https://doi.org/10.1016/C2015-0-02411-X.
  18. Lambe, T.W. (1958), "The engineering behaviour of compacted clay", J. Soil Mech. Found. Div., 84(2), 1-35.
  19. Lawton, E.C., Fragaszy, R.J. and Hetherington, M.D. (1992), "Review of wetting-induced collapse in compacted soil", J. Geotech. Eng., 118(9), 1376-1394. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:9(1376).
  20. Lim, M.W., Lau, E.V. and Poh, P.E. (2016), "A comprehensive guide of remediation technologies for oil contaminated soil-Present works and future directions", Mar. Pollut. Bull., 109(1), 14-45. https://doi.org/10.1016/j.marpolbul.2016.04.023.
  21. Liu, Z., Liu, S., Cai, Y. and Fang, W. (2015), "Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method", Environ. Sci. Pollut. Res., 22(11), 8216-8223. https://doi.org/10.1007/s11356-014-3964-7.
  22. Liu, Z., Wang, H., Hantoro, W.S., Sathiamurthy, E., Colin, C., Zhao, Y. and Li, J. (2012), "Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra)", Chem. Geol., 291, 1-12. https://doi.org/10.1016/j.chemgeo.2011.11.015.
  23. MacNeill, M. (2016). Annual Report, Vienna, Austria: Organization of the Petroleum Exporting Countries.
  24. Meegoda, J.N., Chen, B., Gunasekera, S.D. and Pederson, P. (1998), Compaction Characteristics of Contaminated Soils: Reuse as a Road Base Material in Recycled Materials in Geotechnical Applications, ASCE Geotechnical Special Publication No. 79, 195-209.
  25. Mitchell, J.K. and Soga, K. (2005). Fundamentals of Soil Behavior, John & Wiley Sons.
  26. Mohammadi-Sichani, M., Assadi, M.M., Farazmand, A., Kianirad, M., Ahadi, A. and Hadian-Ghahderijani, H. (2018), "Ability of Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum compost in biodegradation of petroleum hydrocarbon-contaminated soil", Int. J. Environ. Sci. Technol., 16(5), 1-8. https://doi.org/10.1007/s13762-017-1636-0.
  27. Mohanty, S.K., Pradhan, P.K. and Mohanty, C.R. (2017), "Stabilization of expansive soil using industrial wastes", Geomech. Eng., 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111
  28. Mowat, L. (2018), British coast LEGALLY used as dumping ground of palm oil by foreign tankers: Express, https://www.express.co.uk/news/world/914723/palm-oil-shipspoison-waters-British-waters-Cornwall-European-Maritime-Safety-Agency.
  29. MPOB (2017). Overview of the Malaysian Oil Palm Industry, Kuala Lumpur: Malaysian Palm Oil Board.
  30. Murray, H.H. (2000), "Traditional and new applications for kaolin, smectite, and palygorskite: A general overview", Applied Clay Sci., 17(5), 207-221. https://doi.org/10.1016/S0169-1317(00)00016-8
  31. Nagarajan, J., Ramanan, R.N., Raghunandan, M.E., Galanakis, C.M. and Krishnamurthy, N.P. (2017), Chapter 8 - Carotenoids. Nutraceutical and Functional Food Components, Academic Press, 259-296, https://doi.org/10.1016/B978-0-12-805257-0.00008-9.
  32. Nasehi, S.A., Uromeihy, A., Nikudel, M.R. and Morsali, A. (2016), "Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils", Geotech. Geol. Eng., 34(1), 333-345. https://doi.org/10.1007/s10706-015-9948-7.
  33. Nyer, E.K. (2000). In situ Treatment Technology, CRC Press.
  34. Olafisoye, O.B., Oguntibeju, O.O., and Osibote, O.A. (2017), "Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review", Crit. Rev. Food Sci. Nutr., 57(7), 1295-1315. https://doi.org/10.1080/10408398.2014.886032.
  35. Pandey, A. and Bind, Y.K. (2014), "Effects of oil contamination on geotechnical properties of alluvial soil Naini, Allahabad", Int. J. Innov. Technol. Explor. Eng., 3(8), 39-42.
  36. Rahman, Z., Umar, H. and Ahmad, N. (2010), "Geotechnical characteristics of oil-contaminated granitic & metasedimentary soils", Asian J. Appl. Sci., 3(4), 237-249. http://dx.doi.org/10.3923/ajaps.2010.237.249.
  37. Rimmer, A., Parlange, J.Y., Steenhuis, T.S., Darnault, C. and Condit, W. (1996), "Wetting and nonwetting fluid displacements in porous media", Transport Porous Media, 25(2), 205-215. https://doi.org/10.1007/BF00135856.
  38. Saada, A., Siffert, B. and Papirer, E. (1995), "Comparison of the hydrophilicity/hydrophobicity of illites and kaolinites", J. Colloid Interfac. Sci., 174(1), 185-190. https://doi.org/10.1006/jcis.1995.1381
  39. Saberian, M. and Khabiri, M.M. (2018), "Effect of oil pollution on function of sandy soils in protected deserts and investigation of their improvement guidelines (case study: Kalmand area, Iran)", Environ. Geochem. Health, 40(1), 243-254. https://doi.org/10.1007/s10653-016-9897-y.
  40. Santos, A.G.D., Souza, L.D., Caldeira, V.P.S., Farias, M.F., Fernandes Jr, V.J. and Araujo, A.S (2014), "Kinetic study and thermoxidative degradation of palm oil and biodiesel", Thermochimica Acta, 592, 18-22. https://doi.org/10.1016/j.tca.2014.08.006
  41. Shah, S.J., Shroff, A.V., Patel, J.V., Tiwari, K.C. and Ramakrishnan, D. (2003), "Stabilization of fuel oil contaminated soil-A case study", Geotech. Geol. Eng., 21(4), 415-427. https://doi.org/10.1023/B:GEGE.0000006052.61830.1a.
  42. Soleimaninanadegani, M. and Manshad, S. (2014), "Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms", Int. Scholar. Res. Notices, 1-8. http://dx.doi.org/10.1155/2014/727049
  43. Sridharan, A. and Jayadeva, M.S. (1982), "Double layer theory and compressibility of clays", Geotechnique, 32(2), 133-144. https://doi.org/10.1680/geot.1982.32.2.133.
  44. Stiver, W. and Mackay, D. (1984), "Evaporation rate of spills of hydrocarbons and petroleum mixtures", Environ. Sci. Technol., 18(11), 834-840. https://doi.org/10.1021/es00129a006.
  45. Takawira, A., Gwenzi, W. and Nyamugafata, P. (2014), "Does hydrocarbon contamination induce water repellency and changes in hydraulic properties in inherently wettable tropical sandy soils?", Geoderma, 235-236, 279-289. https://doi.org/10.1016/j.geoderma.2014.07.023.
  46. Tan, C.P., Che Man, Y.B., Selamat, J. and Yusoff, M.S.A. (2001), "Application of arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry", J. Amer. Oil Chem. Soc., 78(11), 1133-1138. https://doi.org/10.1007/s11746-001-0401-1.
  47. Trzcinski, J., Williams, D.J. and Zbik, M.S (2015), "Can hydrocarbon contamination influence clay soil grain size composition?", Appl. Clay Sci., 109-110, 49-54. https://doi.org/10.1016/j.clay.2015.03.014.
  48. Urum, K., Grigson, S., Pekdemir, T. and McMenamy, S. (2006), "A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils", Chemosphere, 62(9), 1403-1410. https://doi.org/10.1016/j.chemosphere.2005.05.016
  49. Williams, N.D., Walling, D.E. and Leeks, G.J.L. (2004), "The settling behaviour of fine sediment particles: Some preliminary results from LISST instruments", Proceedings of the International Symposium on Sediment Transfer through the Fluvial System, Moscow, Russia, Russia.
  50. Yoshinaka, R. and Kazama, H. (1973), "Microstructure of compacted kaolin clay", Soil. Found., 13(2), 19-34. https://doi.org/10.1016/0012-8252(72)90112-2.
  51. Yu, E. (2017), Hong Kong cleans up greasy beaches after palm oil spill: Phys.org. https://phys.org/news/2017-08-hong-konggreasy-beaches-palm.html.
  52. Yu, H., Huang, X., Ning, J., Li, Z. and Zhao, Y. (2016), "Improving performance of soil stabilizer by scientific combining of industrial wastes", Geomech. Eng., 10(2), 247-256. https://doi.org/10.12989/gae.2016.10.2.247.
  53. Zbik, M. and Horn, R.G. (2003), "Hydrophobic attraction may contribute to aqueous flocculation of clays", Colloid. Surface. A: Physicochem. Eng. Aspects, 222(1-3), 323-328. https://doi.org/10.1016/S0927-7757(03)00250-4.

Cited by

  1. Stabilization of lateritic soil by ladle furnace slag for pavement subbase material vol.26, pp.4, 2019, https://doi.org/10.12989/gae.2021.26.4.323
  2. Removal behaviors of Cu and Pb from heavy metal contaminated silts flushed by citric acid vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.489