참고문헌
- Aifantis, E.C. (1999), Strain Gradient Interpretation of Size Effects, Springer, Germany.
- Ajri, M., Fakhrabadi, M.M.S. and A. Rastgoo (2018a), "Analytical solution for nonlinear dynamic behavior of viscoelastic nanoplates modeled by consistent couple stress theory", Latin American J. Solids Struct., 15(9),1-23. http://doi.org/10.1590/1679-78254918.
- Ajri, M., Fakhrabadi, M.M.S. and A. Rastgoo (2018b), "Primary and secondary resonance analyses of viscoelastic nanoplates based on strain gradient theory", J. Appl. Mech., 10(10), 1850109. https://doi.org/10.1142/S1758825118501090
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://doi.org/10.12989/sss.2016.18.6.1125.
- Amabili, M. (2004), "Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments", Comput. Struct., 82(31-32), 2587-2605. https://doi.org/10.1016/j.compstruc.2004.03.077.
- Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013.
- Babaei, A., Noorani, M.R.S. and Ghanbari, A. (2017), "Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory", Microsyst. Technol., 23(10), 4599-4610. https://doi.org/10.1007/s00542-017-3285-0.
- Baghelani, M. (2016), "Design of a multi-frequency resonator for UHF multiband communication applications", Microsyst. Technol., 22(10), 2543-2548. https://doi.org/10.1007/s00542-015-2639-8.
- Braun, T., Barwich, V., Ghatkesar, M.K., Bredekamp, A.H., Gerber, C., Hegner, M. and Lang, H.P. (2005), "Micromechanical mass sensors for biomolecular detection in a physiological environment", Physical Review E, 72(3), 031907. https://doi.org/10.1103/PhysRevE.72.031907.
- Budakian, R., Mamin, H. and Rugar, D. (2006), "Spin manipulation using fast cantilever phase reversals", Appl. Phys. Lett., 89(11), 113113. https://doi.org/10.1063/1.2349311.
- Christensen, R.M. and Freund, L. (1971), "Theory of viscoelasticity", J. Appl. Mech., 38, 720. https://doi.org/10.1115/1.3408900
- Domaneschi, M., Limongelli, M.P. and Martinelli, L. (2013), "Vibration based damage localization using MEMS on a suspension bridge model", Smart Struct. Syst., 12(6), 679-694. https://doi.org/10.12989/sss.2013.12.6.679.
- Ehyaei, J. and Akbarizadeh, M.R. (2017), "Vibration analysis of micro composite thin beam based on modified couple stress", Struct. Eng. Mech., 64(4), 403-411. https://doi.org/10.12989/sem.2017.64.4.403.
- Ekinci, K., Huang, X. and Roukes, M. (2004), "Ultrasensitive nanoelectromechanical mass detection", Appl. Phys. Lett., 84(22), 4469-4471. https://doi.org/10.1063/1.1755417.
- Elwenspoek, M. and Jansen, H.V. (2004), Silicon Micromachining, Cambridge University Press, United Kingdom.
- Fu, H. and Qian, Y. (2018), "Study on a Multi-Frequency Homotopy Analysis Method for Period-Doubling Solutions of Nonlinear Systems", J. Bifurcation Chaos, 28(04), 1850049. https://doi.org/10.1142/S0218127418500499.
- Fu, Y. and Zhang, J. (2009), "Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam", Acta Mechanica Sinica, 25(2), 211-218. https://doi.org/10.1007/s10409-008-0216-4.
- Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.
- Ghayesh, M.H. and Amabili, M. (2012), "Nonlinear dynamics of axially moving viscoelastic beams over the buckled state", Comput. Struct., 112, 406-421. https://doi.org/10.1016/j.compstruc.2012.09.005.
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013), "Nonlinear behaviour of electrically actuated MEMS resonators", J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006.
- Ghayesh, M.H., Farokhi, H., Hussain, S., Gholipour, A. and Arjomandi, M. (2017), "A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium", Microsyst. Technol., 23(8), 3281-3299. https://doi.org/10.1007/s00542-016-3096-8.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch Rat. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.
- Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B, 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008.
- Huang, N.E., Shen, Z. and Long, S.R. (1999), "A new view of nonlinear water waves: the Hilbert spectrum", Annual Rev. Fluid Mech., 31(1), 417-457. https://doi.org/10.1146/annurev.fluid.31.1.417
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. https://doi.org/10.1098/rspa.1998.0193.
- Huang, X., Feng, X., Zorman, C., Mehregany, M. and Roukes, M. (2005), "VHF, UHF and microwave frequency nanomechanical resonators", New J. Phys., 7(1), 247. https://doi.org/10.1088/1367-2630/7/1/247
- Huber, T.M., Abell, B.C., Mellema, D.C., Spletzer, M. and Raman, A. (2010), "Mode-selective noncontact excitation of microcantilevers and microcantilever arrays in air using the ultrasound radiation force", Appl. Phys. Lett., 97(21), 214101. https://doi.org/10.1063/1.3521256.
- Hwang, D.G., Chae, Y.M., Choi, N., Cho, I.J., Kang, J.Y. and Lee, S.H. (2017), "Label-free detection of prostate specific antigen (PSA) using a bridge-shaped PZT resonator", Microsyst. Technol., 23(5), 1207-1214. https://doi.org/10.1007/s00542-015-2804-0.
- Jamalpoor, A., Bahreman, M. and Hosseini, M. (2017), "Free transverse vibration analysis of orthotropic multi-viscoelastic microplate system embedded in visco-Pasternak medium via modified strain gradient theory", J. Sandwich Struct. Mater., https://doi.org/10.1177/1099636216689384.
- JE., L. (1989), Boundary Stabilization of Thin Plates, SIAM, Philadelphia, USA.
- Jiang, J.W., Wang, J.S. and Li, B. (2009), "Young's modulus of graphene: a molecular dynamics study", Phys. Rev. B, 80(11), 113405. https://doi.org/10.1103/PhysRevB.80.113405.
- Jomehzadeh, E., Noori, H. and Saidi, A. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimensional Systems and Nanostructures, 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.
- Kalyanaraman, R., Rinaldi, G., Packirisamy, M. and Bhat, R. (2013), "Equivalent area nonlinear static and dynamic analysis of electrostatically actuated microstructures", Microsyst. Technol., 19(1), 61-70. https://doi.org/10.1007/s00542-012-1621-y.
- Karlicic, D., Kozic, P. and Pavlovic, R. (2014), "Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium", Compos. Struct., 115, 89-99. https://doi.org/10.1016/j.compstruct.2014.04.002.
- Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory", J. Sound Vib., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020.
- Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle", J. Eng. Sci., 115, 51-72. https://doi.org/10.1016/j.ijengsci.2017.02.005.
- Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Leaderman, H. (1962), "Large longitudinal retarded elastic deformation of rubberlike network polymers", Transac. Soc. Rheology, 6(1), 361-382. https://doi.org/10.1122/1.548932.
- Lee, H.J., Zhang, P. and Bravman, J.C. (2005), "Stress relaxation in free-standing aluminum beams", Thin Solid Films, 476(1), 118-124. https://doi.org/10.1016/j.tsf.2004.10.001.
- Leng, H. and Lin, Y. (2011), "A MEMS/NEMS sensor for human skin temperature measurement", Smart Struct. Syst., 8(1), 53-67. https://doi.org/10.12989/sss.2011.8.1.053.
- Li, M., Tang, H.X. and Roukes, M.L. (2007), "Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications", Nature Nanotechnol., 2(2), 114. https://doi.org/10.1038/nnano.2006.208
- Liu, J., Zhang, Y. and Fan, L. (2017), "Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between", Phys. Lett. A, 381(14), 1228-1235. https://doi.org/10.1016/j.physleta.2017.01.056.
- Lopez, G. (2013), "Diamond as a solid state quantum computer with a linear chain of nuclear spins system", arXiv preprint arXiv:1310.0750. https://doi.org/10.4236/jmp.2014.51009.
- Lou, J. and He, L. (2015), "Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory", Compos. Struct., 131, 810-820. https://doi.org/10.1016/j.compstruct.2015.06.031.
- Ma, H., Gao, X.L. and Reddy, J. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mechanica, 220(1-4), 217-235. https://doi.org/10.1007/s00707-011-0480-4
- Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch Rat. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946.
- Mockensturm, E.M. and Guo, J. (2005), "Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings", J. Appl. Mech., 72(3), 374-380. https://doi.org/10.1115/1.1827248
- Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.
- Naik, A., Hanay, M., Hiebert, W., Feng, X. and Roukes, M. (2009), "Towards single-molecule nanomechanical mass spectrometry", Nature Nanotechnol., 4(7), 445. https://doi.org/10.1038/nnano.2009.152
- Niyogi, A. (1973), "Nonlinear bending of rectangular orthotropic plates", J. Solid. Struct., 9(9), 1133-1139. https://doi.org/10.1016/0020-7683(73)90020-6.
- Pan, Z. and Chen, J. (2017), "Measurements of pedestrian", Struct. Eng. Mech., 63(6).
- Paolino, P. and Bellon, L. (2009), "Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement", Nanotechnol., 20(40), 405705. https://doi.org/10.1088/0957-4484/20/40/405705
- Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
- Qian, Y. and Fu, H. (2017), "Research for coupled van der Pol systems with parametric excitation and its application", Zeitschrift fur Naturforschung A, 72(11), 1009-1020. https://doi.org/10.1515/zna-2017-0249.
- Qian, Y., Fu, H. and Guo, J. (2018), "Weakly resonant double Hopf bifurcation in coupled nonlinear systems with delayed freedback and application of homotopy analysis method", J. Low Frequency Noise, Vib. Active Control, ttps://doi.org/10.1177/1461348418765975.
- Qian, Y. and Zhang, Y. (2017), "Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application", Struct. Eng. Mech., 61(1), 105-116. https://doi.org/10.12989/sem.2017.61.1.105.
- Reddy, J. and Kim, J. (2012), "A nonlinear modified couple stressbased third-order theory of functionally graded plates", Compos. Struct., 94(3), 1128-1143. https://doi.org/10.1016/j.compstruct.2011.10.006.
- Sato, M., Hubbard, B., Sievers, A., Ilic, B., Czaplewski, D. and Craighead, H. (2003), "Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array", Physical Rev. Lett., 90(4), https://doi.org/10.1103/PhysRevLett.90.044102.
- Saulson, P.R. (1990), "Thermal noise in mechanical experiments", Physical Review D, 42(8), 2437. https://doi.org/10.1103/PhysRevD.42.2437.
- Setoodeh, A. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.
- Shim, S.-B., Imboden, M. and Mohanty, P. (2007), "Synchronized oscillation in coupled nanomechanical oscillators", Science, 316(5821), 95-99. https://doi.org/10.1126/science.1137307.
- Shinozuka, M., Chou, P.H., Kim, S., Kim, H., Karmakar, D. and Lu, F. (2010), "Non-invasive acceleration-based methodology for damage detection and assessment of water distribution system", Smart Struct. Syst., 6(6).
- Smart, J. and Williams, J. (1972), "A comparison of single-integral non-linear viscoelasticity theories", J. Mech. Phys. Solids, 20(5), 313-324. https://doi.org/10.1016/0022-5096(72)90027-0.
- Su, Y., Wei, H., Gao, R., Yang, Z., Zhang, J., Zhong, Z. and Zhang, Y. (2012), "Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper", Carbon, 50(8), 2804-2809. https://doi.org/10.1016/j.carbon.2012.02.045.
- Tajaddodianfar, F., Yazdi, M.R.H. and Pishkenari, H.N. (2017), "Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method", Microsyst. Technol., 23(6), 1913-1926. https://doi.org/10.1007/s00542-016-2947-7.
- Tang, Y.Q. and Chen, L.Q. (2012), "Parametric and internal resonances of in-plane accelerating viscoelastic plates", Acta Mechanica, 223(2), 415-431. https://doi.org/10.1007/s00707-011-0567-y.
- Teh, K.S. and Lin, L. (1999), "Time-dependent buckling phenomena of polysilicon micro beams", Microelectronic. J., 30(11), 1169-1172. https://doi.org/10.1016/S0026-2692(99)00081-6.
- Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch Rat. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.
- Tuck, K., Jungen, A., Geisberger, A., Ellis, M. and Skidmore, G. (2005), "A study of creep in polysilicon MEMS devices", J. Eng. Mater. Technol., 127(1), 90-96. https://doi.org/10.1016/j.physe.2014.11.007.
- Wang, Y., Li, F.M. and Wang, Y.Z. (2015), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Physica E: Low-dimensional Systems and Nanostructures, 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007.
- Yan, X., Brown, W., Li, Y., Papapolymerou, J., Palego, C., Hwang, J. and Vinci, R. (2009), "Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices", J. Microelectromech. Syst., 18(3), 570-576. https://doi.org/10.1109/JMEMS.2009.2016280
- Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yang, Y., Callegari, C., Feng, X., Ekinci, K. and Roukes, M. (2006), "Zeptogram-scale nanomechanical mass sensing", Nano Lett., 6(4), 583-586. https://doi.org/10.1021/nl052134m.