DOI QR코드

DOI QR Code

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • 투고 : 2018.07.12
  • 심사 : 2019.03.08
  • 발행 : 2019.06.10

초록

This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

키워드

참고문헌

  1. Abdelhak, Z., Hadji, L., Khelifa, Z., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), "Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory", Wind Struct., 22(3), 291-305. https://doi.org/10.12989/was.2016.22.3.291.
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  4. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  5. Adim Belkacem, Hassaine Daouadji, T., Rabia Benferhat and Lazreg Hadji, (2016a), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  6. Adim, B., Hassaine Daouadji, T., Rabia, B. and Hadji, L. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory" Mech. Industry, 17, 512. https://doi.org/10.1051/meca/2015112.
  7. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  8. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  9. Adim, B., Hassaine Daouadji, T. and Rabahi, A. (2016), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng., 8, 103-117. https://doi.org/10.1007/s40091-016-0109-x.
  10. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  11. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Strcut. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  12. Benhenni Mohamed, Hassaine Daouadji, T., Boussad Abbes, Yu Ming LI , Fazilay Abbes (2018), "Analytical and Numerical Results for Free Vibration of Laminated Composites Plates", J. Chem. Molecular Eng., 12(6), 300-304.
  13. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E. A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
  14. Benferhat, R., Hassaine Daouadji, T. and Said Mansour, M. (2016a), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus de Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  15. Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016b), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  16. Bennoun, M. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
  17. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  18. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  19. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  20. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  21. Berthelot, J.M. (2012), Materiaux Composites: Comportement Mecanique et Analyse des Structures, Lavoisier, Paris, France.
  22. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  23. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  24. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
  25. Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A New Higher Order Shear Deformation Model for Functionally Graded Beams", KSCE Journal of Civil Engineering", 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
  26. Hadji, L., Zouatnia, N., and Kassoul, A., (2017), "Wave propagation in functionally graded beams using various higherorder shear deformation beams theories" , Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143
  27. Hadji, L., Zouatnia, N. and Bernard, F. (2019a), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231
  28. Hadji, L. and Zouatnia, N. (2019b), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2),177-183. https://doi.org/10.12989/EAS.2019.16.2.177
  29. Hassaine Daouadji T. and Adim Belkacem (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3Dhigher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
  30. Hassaine Daouadji, T., Benferhat, R. and Belkacem, A. (2016a), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-285. https://doi.org/10.12989/csm.2016.5.3.269
  31. Hassaine Daouadji, T. and Adim Belkacem (2016b), "An analytical approach for buckling of functionally graded plates" Adv. Mater. Res., 5(3), 141-169. https://doi.org/10.12989/amr.2016.5.3.141.
  32. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
  33. Javed, S., Viswanathan, K.K., NurulIzyan, M.D., Aziz, Z.A. and Lee, J.H. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26(4). https://doi.org/10.12989/scs.2018.26.4.473.
  34. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  35. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  36. Khalifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  37. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plate", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  38. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", J. Solid Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
  39. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  40. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
  41. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
  42. Benferhat, R., Hassaine Daouadji, T. and Mansour, M.S. (2016a), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  43. Benferhat, R., Hassaine Daouadji, T., Mansour, M.S. and Hadji, L. (2016b), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(5), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  44. Reddy, J.N. (1984a), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  45. Reddy, J.N. (1984b), "A refined nonlinear theory of plates with transverse shear deformation", J. Solid Struct.,20(9/10), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8.
  46. Reddy, J.N. (1990), "A general nonlinear third-order theory of plates with transverse shear deformation", J. Non-Linear Mech., 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U
  47. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates - Theory and Analysis, CRC Press, New York, NY, USA.
  48. Ren, J.G. (1990), "Bending, vibration and buckling of laminated plates", Handbook of Ceramics and Composites, Marcel Dekker, New York, USA.
  49. Stavski, Y. (1965), "On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli", Topics Appl. Mech., Elsevier, New York, U.S.A.
  50. Sathishkumar, T.P., Naveen, J. and Satheeshkumar, S. (2014), "Hybrid fiber reinforced polymer composites - A review", J. Reinforced Plastics Compos., 33(5), 454-471. https://doi.org/10.1177/0731684413516393.
  51. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  52. Hassaine Daouadji, T., B. Adim (2016a) "Theoretical analysis of composite beams under uniformly distributed load", Adv. Mater. Res., 5(1), 1-9. https://doi.org/10.12989/amr.2016.5.1.001.
  53. Hassaine Daouadji, T., Benferhat, R. and Belkacem, A. (2016b), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107.
  54. Hassaine Daouadji, T., Adim, B. and Benferhat, R. (2016c), "Bending analysis of an imperfect FGM plates under hygrothermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035.
  55. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  56. Tu, T.M., Quoc, T.H. and Long, N.V. (2017), "Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311.
  57. Vasiliev, V.V. and Morozov, E.V. (2001), Mechanics and Analysis of Composite Materials, Elsevier Science, Oxford, United Kingdom.
  58. Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech., 40(1), 302-304. https://doi.org/10.1115/1.3422950.
  59. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  60. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  61. Yousfi, M., Ait Atmane, H., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/SEM.2018.66.3.353
  62. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  63. Abdelhak, Z., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  64. Zouatnia, N., Hadji, L. and Kassoul, A. (2018), "An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions", Geomech. Eng., 16(1), 1-9. https://doi.org/10.12989/gae.2018.16.1.001.

피인용 문헌

  1. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  2. Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2019, https://doi.org/10.12989/csm.2020.9.6.499
  3. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  4. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  5. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
  6. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2019, https://doi.org/10.12989/sem.2021.77.6.797
  7. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2019, https://doi.org/10.12989/acd.2021.6.2.117
  8. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2019, https://doi.org/10.12989/amr.2021.10.3.169