DOI QR코드

DOI QR Code

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Hu, Jia (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Zhou, Yun-Lai (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Zhang, Yazhou (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Kang, Juntao (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • Received : 2018.10.04
  • Accepted : 2019.03.05
  • Published : 2019.06.10

Abstract

This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China, Central Universities

References

  1. Acan, A., A. Unveren, A. and Bodur. M, (2006), "The latest vs. averaged recent experience: Which better guides a PSO algorithm", 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, July. http://doi.org/10.1109/CEC.2006.1688338.
  2. Bakir, P.G., Reynders. E. and Roeck. G.D. (2008), "An improved finite element model updating method by the global optimization technique 'Coupled Local Minimizers'", Comput. Struct., 86(11-12), 1339-1352. https://doi.org/10.1016/j.compstruc.2007.08.009
  3. Brownjohn, J. (2001), "Civil structure condition assessment by FE model updating: methodology and case studies", Finite. Elem. Anal. Des., 37(10), 761-775. https://doi.org/10.1016/S0168-874X(00)00071-8.
  4. Caicedo, J.M. and Yun. G.J. (2011), "A novel evolutionary algorithm for identifying multiple alternative solutions in model updating", Struct. Health. Monit., 10(5), 491-501. https://doi.org/10.1177/1475921710381775.
  5. Cao, H.Y., Qian, X.D., Chen, Z.J. and Zhu, H.P. (2017), "Enhanced particle swarm optimization for size and shape optimization of truss structures", Eng. Optimiz., 49(11), 1939-1956. https://doi.org/10.1080/0305215X.2016.1273912.
  6. Cao, H.Y., Qian, X.D. and Zhou, Y.L. (2018), "Large-scale structural optimization using metaheuristic algorithms with elitism and a filter strategy", Struct. Multidiscip. O., 57(2), 799-814. https://doi.org/10.1007/s00158-017-1784-3.
  7. Chen, Z.J., Cao, H.Y., Ye, K., Zhu, H.P. and Li, S.F. (2015), "Improved particle swarm optimization-based form-finding method for suspension bridge installation analysis", J. Comput. Civil. Eng., 29(3), (4014047). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000354
  8. Das, S., Abraham, A. and Konar, A. (2008), Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives, Springer, Berlin, Heidelberg.
  9. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA- II", IEEE. T. Evolut. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017
  10. Deng, L. and Cai, C.S. (2010), "Bridge model updating using response surface method and genetic algorithm", J. Bridge. Eng., 15(5), 553-564. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000092
  11. Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, Japan, October. https://doi.org/10.1109/MHS.1995.494215.
  12. Fang, S.E. and Perera, R. (2011), "Damage identification by response surface based model updating using D-optimal design", Mech. Syst. Signal. Pr., 25(2),717-733. https://doi.org/10.1016/j.ymssp.2010.07.007.
  13. Fang, S.E., Ren, W.X. and Perera, R. (2012), "A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation", Mech. Syst. Signal. Pr., 33, 83-96. https://doi.org/10.1016/j.ymssp.2012.06.028.
  14. Guo, N., Yang, Z.C., Jia, Y. and Wang, L. (2016), "Model updating using correlation analysis of strain frequency response function", Mech. Syst. Signal. Pr., 70-71, 284-299. https://doi.org/10.1016/j.ymssp.2015.09.036.
  15. Jaishi, B. (2005), "Finite element model updating of civil engineering structures under operational conditions", Ph.D. Dissertation, Fuzhou University, Fuzhou, China.
  16. Jaishi, B., Kim, H.J., Kim, M.K., Ren, W.X. and Lee, S.H. (2007), "Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility", Mech. Syst. Signal. Pr., 21(6),2406-2426. https://doi.org/10.1016/j.ymssp.2007.01.003.
  17. Kao, Y.T. and Zahara, E. (2008), "A hybrid genetic algorithm and particle swarm optimization for multimodal functions", Appl. Soft. Comput., 8(2), 849-857. https://doi.org/10.1016/j.asoc.2007.07.002.
  18. Khodaparast, H.H., Mottershead, J.E. and Badcock, K.J. (2011), "Interval model updating with irreducible uncertainty using the Kriging predictor", Mech. Syst. Signal. Pr., 25(4), 1204-1226. https://doi.org/10.1016/j.ymssp.2010.10.009.
  19. Li, H. and Zhang, Q.F. (2009), "Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGAII", IEEE. T. Evolut. Comput., 13(2), 284-302. https://doi.org/10.1109/TEVC.2008.925798
  20. Liu, Y., Wang, D.J., Ma, J. and Li, Yang. (2014), "Performance Comparison of two meta-model for the application to finite element model updating of structures", J. Harbin Institute Technol., 21(3), 68-78.
  21. Martin, J.D. and Simpson, T.W. (2005), "Use of kriging models to approximate deterministic computer models", AIAA. J., 43(4), 853-863. https://doi.org/10.2514/1.8650.
  22. Marwala, T. (2010), Finite-element-model Updating Using Computational Intelligence Techniques, Springer, Berlin, Heidelberg.
  23. Mottershead, J.E., Link, M. and Friswell, M.I. (2011), "The sensitivity method in finite element model updating: A tutorial", Mech. Syst. Signal. Pr., 25(7), 2275-2296. https://doi.org/10.1016/j.ymssp.2010.10.012.
  24. Pedram, M., Esfandiari, A. and Khedmati, M.R. (2016), "Finite element model updating using strain-based power spectral density for damage detection", Struct. Control. Hlth., 23(11), 1314-1333. https://doi.org/10.1002/stc.1833.
  25. Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019.
  26. Sehgal, S. and Kumar, H. (2015), "Structural dynamic model updating techniques: A state of the art review", Arch. Comput. Method. E., 23(3), 515-533. https://doi.org/10.1007/s11831-015-9150-3.
  27. Shabbir, F. and Omenzetter, P. (2015), "Particle swarm optimization with sequential niche technique for dynamic finite element model updating", Comput-Aided. Civ. Inf., 30(5), 359-375. https://doi.org/10.1111/mice.12100.
  28. Shabbir, F. and Omenzetter, P. (2016), "Model updating using genetic algorithms with sequential niche technique", Eng. Struct., 120, 166-182. https://doi.org/10.1016/j.engstruct.2016.04.028.
  29. Shan, D., Li, Q., Khan, I. and Zhou, X.H. (2015), "A novel finite element model updating method based on substructure and response surface model", Eng. Struct., 103, 147-156. https://doi.org/10.1016/j.engstruct.2015.09.006.
  30. Teughels, A., De Roeck, G. and Suykens, J.A.K. (2003), "Global optimization by coupled local minimizers and its application to FE model updating", Comput. Struct., 81(24-25), 2337-2351. https://doi.org/10.1016/S0045-7949(03)00313-4.
  31. Titurus, B. and Friswell, M.I. (2010), "Regularization in model updating", Int. J. Numer. Meth. Eng., 75(4), 440-478. https://doi.org/10.1002/nme.2257.
  32. Wan, H.P. and Ren, W.X. (2015), "A residual-based Gaussian process model framework for finite element model updating", Comput. Struct., 156, 149-159. https://doi.org/10.1016/j.compstruc.2015.05.003.
  33. Wang, J.T., Wang, C.J. and Zhao, J.P. (2017), "Frequency response function-based model updating using Kriging model", Mech. Syst. Signal. Pr., 87, 218-228. https://doi.org/10.1016/j.ymssp.2016.10.023.
  34. Xia, Z.Y., Li, A.H. and Duan, M.J. (2017), "FE model updating on an in-service self-anchored suspension bridge with extra-width using hybrid method", Applied Sciences-basel, 7(2), 191-205. https://doi.org/10.3390/app7020191.
  35. Zarate, B.A. and Caicedo, J.M. (2008), "Finite element model updating: Multiple alternatives", Eng. Struct., 30(12), 3724-3730. https://doi.org/10.1016/j.engstruct.2008.06.012.
  36. Zhao, B., Guo, C.X. and Cao, Y.J. (2005), "An improved particle swarm optimization algorithm for optimal reactive power dispatch", IEEE. Power. Eng. Soc., 1, 272-279. https://doi.org/10.1109/PES.2005.1489159.
  37. Zhang, H.D., Fang, L. and Cen, Y.W. (2011), "Comparison among three kinds of hybrid particle swarm optimization algorithms", 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, May. https://doi.org/10.1109/CCDC.2011.5968707.
  38. Zhou, L.R., Yan, G.R. and Ou, J.P. (2013), "Response surface method based on radial basis functions for modeling large-scale structures in model updating", Comput-Aided. Civ. Inf., 28(3), 210-226. https://doi.org/10.1111/j.1467-8667.2012.00803.x.
  39. Zivanovic, S., Pavic, A. and Reynoldset, P. (2007), "Finite element modelling and updating of a lively footbridge: The complete process", J. Sound. Vib., 301(1-2), 126-145. https://doi.org/10.1016/j.jsv.2006.09.024.
  40. Zong, Z.H., Lin, X.S. and Niu, J. (2015), "Finite element model validation of bridge based on structural health monitoring-Part I: Response surface-based finite element model updating", J. Traffic Transport. Eng. (Eng. Ed.)., 2(4), 258-278. https://doi.org/10.1016/j.jtte.2015.06.001.

Cited by

  1. Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model vol.74, pp.2, 2019, https://doi.org/10.12989/sem.2020.74.2.157
  2. Direct Calculation of Updating Parameters Based on Kriging Model for Bridge Finite Element Model Updating vol.787, pp.1, 2019, https://doi.org/10.1088/1755-1315/787/1/012188