DOI QR코드

DOI QR Code

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Received : 2019.01.02
  • Accepted : 2019.04.13
  • Published : 2019.06.10

Abstract

To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

Keywords

Acknowledgement

Grant : Development of petroleum based graphite fibers with ultra-high thermal conductivity

Supported by : Ministry of Trade, Industry & Energy(MOTIE), Small and Medium Business Administration(SMBA)

References

  1. Ahmadi, M., Zabihi, O., Masoomi, M. and Naebe, M. (2016), "Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites", Compos. Sci. Technol., 134, 1-11. https://doi.org/10.1016/j.compscitech.2016.07.026
  2. Ajayan, P.M. and Tour, J.M. (2007), "Materials science: nanotube composites", Nature, 447(7148), 1066. https://doi.org/10.1038/4471066a
  3. Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A. (2000), "Single-walled carbon nanotube-polymer composites: strength and weakness", Adv. Mater., 12(10), 750-753. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  4. Alharbi, T.M., Vimalanathan, K., Lawrance, W.D. and Raston, C.L. (2018), "Controlled slicing of single walled carbon nanotubes under continuous flow", Carbon, 140, 428-432. https://doi.org/10.1016/j.carbon.2018.08.066
  5. Bellahcene, T. and Aberkane, M. (2017), "Estimation of fracture toughness of cast steel container from Charpy impact test data", Steel Compos. Struct. Int. J., 25(6), 639-648. http://dx.doi.org/10.12989/scs.2017.25.6.639
  6. Byl, O., Liu, J. and Yates, J.T. (2005), "Etching of carbon nanotubes by ozone a surface area study", Langmuir., 21(9), 4200-4204. https://doi.org/10.1021/la040132w
  7. Carmisciano, S., De Rosa, I.M., Sarasini, F., Tamburrano, A. and Valente, M. (2011), "Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties", Mater. Des., 32(1), 337-342. https://doi.org/10.1016/j.matdes.2010.06.042
  8. Chen, W., Shen, H., Auad, M.L., Huang, C. and Nutt, S. (2009), "Basalt fiber-epoxy laminates with functionalized multi-walled carbon nanotubes", Compos. Part A Appl. Sci. Manuf., 40(8), 1082-1089. https://doi.org/10.1016/j.compositesa.2009.04.027
  9. Choi, J.R. and Park, S.J. (2013), "A study on thermal conductivity and fracture toughness of alumina nanofibers and powdersfilled epoxy matrix composites", Polym., 37(1), 47-51. [In Korean]
  10. Czigany, T., Vad, J. and Poloskei, K. (2005), "Basalt fiber as a reinforcement of polymer composites", Period. Mech. Eng., 49(1), 3-14.
  11. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A. and Galiotis, C. (2008), "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46(6), 833-840. https://doi.org/10.1016/j.carbon.2008.02.012
  12. Deak, T., Czigany, T., Tamas, P. and Nemeth, C. (2010), "Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents", Polym. Lett., 4(10), 590-598. https://doi.org/10.3144/expresspolymlett.2010.74
  13. Dong, W., Liu, H.C., Park, S.J. and Jin, F.L. (2014), "Fracture toughness improvement of epoxy resins with short carbon fibers", J. Industrial. Eng. Chem., 20(4), 1220-1222. https://doi.org/10.1016/j.jiec.2013.06.053
  14. Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J. and Hui, D. (2015), "A short review on basalt fiber reinforced polymer composites", Compos. Part B. Eng., 73, 166-180.
  15. Eskizeybek, V., Avci, A. and Gulce, A. (2014), "The Mode I interlaminar fracture toughness of chemically carbon nanotube grafted glass fabric/epoxy multi-scale composite structures", Compos. Part A Appl. Sci. Manuf., 63, 94-102. https://doi.org/10.1016/j.compositesa.2014.04.013
  16. Fowkes, F.M. (1962), "Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces", J. Phys. Chem., 66(2), 382-382. https://doi.org/10.1021/j100808a524
  17. Galpaya, D., Wang, M., George, G., Motta, N., Waclawik, E. and Yan, C. (2014), "Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties", J. Appl. Phys., 116(5), 053518 https://doi.org/10.1063/1.4892089
  18. Gojny, F.H., Wichmann, M.H., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H. and Schulte, K. (2006), "Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites", Polymer, 47(6), 2036-2045. https://doi.org/10.1016/j.polymer.2006.01.029
  19. Karaipekli, A., Bicer, A., Sari, A. and Tyagi, V.V. (2017), "Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes", Energy Convers. Manag., 134, 373-381. https://doi.org/10.1016/j.enconman.2016.12.053
  20. Kaelble, D.H. (1970), "Dispersion-polar surface tension properties of organic solids", The J. Adhesion, 2(2), 66-81. https://doi.org/10.1080/0021846708544582
  21. Kim, S.H., Heo, Y.J., Park, M., Min, B.G., Rhee, K.Y. and Park, S. J. (2018), "Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites", Compos. Part B. Eng., 153, 9-16. https://doi.org/10.1016/j.compositesb.2018.07.022
  22. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G.L. and Wilis, P. (2003), "Electrospinning of continuous carbon nanotube-filled nanofiber yarns", Adv. Mater., 15(14), 1161-1165. https://doi.org/10.1002/adma.200304955
  23. Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct. Int. J., 26(3), 273-287. http://dx.doi.org/10.12989/scs.2018.26.3.273
  24. Kwon, D.J., Shin, P.S., Kim, J.H., DeVries, K.L. and Park, J.M. (2017), "Evaluation of optimal dispersion conditions for CNT reinforced epoxy composites using cyclic voltammetry measurements", Adv. Compos. Mater., 26(3), 219-227. https://doi.org/10.1080/09243046.2016.1256072
  25. Lee, Y.I., Kim, S., Lee, K.J., Myung, N.V. and Choa, Y.H. (2013), "Inkjet printed transparent conductive films using waterdispersible single-walled carbon nanotubes treated by UV/ozone irradiation", Thin Solid Films., 536, 160-165. https://doi.org/10.1016/j.tsf.2013.02.109
  26. Lee, S.O., Rhee, K.Y. and Park, S.J. (2015), "Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites", J. Industrial. Eng. Chem., 32, 153-156. https://doi.org/10.1016/j.jiec.2015.08.009
  27. Li, J., Sham, M.L., Kim, J.K. and Marom, G. (2007), "Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites", Compos. Sci. Technol., 67(2), 296-305. https://doi.org/10.1016/j.compscitech.2006.08.009
  28. Li, Y., Zhang, H., Liu, Y., Wang, H., Huang, Z., Peijs, T. and Bilotti, E. (2018), "Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates", Compos. Part A Appl. Sci. Manuf., 105, 9-18. https://doi.org/10.1016/j.compositesa.2017.10.032
  29. Liu, Y. and Wilkinson, A. (2018), "Rheological percolation behaviour and fracture properties of nanocomposites of MWCNTs and a highly crosslinked aerospace-grade epoxy resin system", Compos. Part A Appl. Sci. Manuf., 105, 97-107. https://doi.org/10.1016/j.compositesa.2017.11.012
  30. Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48(6), 1824-1834. https://doi.org/10.1016/j.carbon.2010.01.028
  31. Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Liu, J. and Smalley, R.E. (2000), "Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K", J. Am. Chem. Soc., 122(10), 2383-2384. https://doi.org/10.1021/ja994094s
  32. Mishra, S., Dwivedi, J., Kumar, A. and Sankararamakrishnan, N. (2016), "Removal of antimonite (Sb (III)) and antimonate (Sb (V)) using zerovalent iron decorated functionalized carbon nanotubes", RSC Adv., 6(98), 95865-95878. https://doi.org/10.1039/C6RA18965B
  33. Mittal, G. and Rhee, K.Y. (2018), "Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites", Compos. Sci. Technol., 165, 84-94. https://doi.org/10.1016/j.compscitech.2018.06.018
  34. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary co nditions", Steel Compos. Struct. Int. J., 24(3), 359-367.
  35. Najafi, E., Kim, J.Y., Han, S.H. and Shin, K. (2006), "UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion", Colloid. Surf. A Physicochem. Eng. Aspects., 284, 373-378. https://doi.org/10.1016/j.colsurfa.2005.11.074
  36. Ozturk, B.U.L.E.N.T., Arslan, F. and Ozturk, S.U.L.T.A.N. (2007), "Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials", Tribol. Int., 40(1), 37-48. https://doi.org/10.1016/j.triboint.2006.01.027
  37. Owens, D.K. and Wendt, R.C. (1969), "Estimation of the surface free energy of polymers", J. Appl. Polym. Sci., 13(8), 1741-1747. https://doi.org/10.1002/app.1969.070130815
  38. Quagliarini, E., Monni, F., Lenci, S. and Bondioli, F. (2012), "Tensile characterization of basalt fiber rods and ropes: A first contribution", Constr. Build. Mater., 34, 372-380. https://doi.org/10.1016/j.conbuildmat.2012.02.080
  39. Ravindran, A.R., Ladani, R.B., Wu, S., Kinloch, A.J., Wang, C.H. and Mouritz, A.P. (2018), "Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres", Compos. Sci. Technol., 167, 115-125. https://doi.org/10.1016/j.compscitech.2018.07.034
  40. Ray, B.C. (2004), "Thermal shock on interfacial adhesion of thermally conditioned glass fiber/epoxy composites", Mater. Lett., 58(16), 2175-2177. https://doi.org/10.1016/j.matlet.2004.01.035
  41. Ray, B.C. (2006), "Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites", J. Colloid Interf. Sci., 298(1), 111-117. https://doi.org/10.1016/j.jcis.2005.12.023
  42. Ryu, S.K., Park, B.J. and Park, S.J. (1999), "XPS analysis of carbon fiber surfaces-anodized and interfacial effects in fiber-epoxy composites", J. Colloid Interf. Sci., 215(1), 167-169. https://doi.org/10.1006/jcis.1999.6240
  43. Sarasini, F., Tirillo, J., Valente, M., Valente, T., Cioffi, S., Iannace, S. and Sorrentino, L. (2013), "Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites", Compos. Part A Appl. Sci. Manuf., 47, 109-123. https://doi.org/10.1016/j.compositesa.2012.11.021
  44. Sham, M.L. and Kim, J.K. (2006), "Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments", Carbon, 44(4), 768-777. https://doi.org/10.1016/j.carbon.2005.09.013
  45. Shi, X.H., Xu, Y.J., Long, J.W., Zhao, Q., Ding, X.M., Chen, L. and Wang, Y.Z. (2018), "Layer-by-layer assembled flameretardant architecture toward high-performance carbon fiber composite", Chem. Eng. J., 353, 550-558. https://doi.org/10.1016/j.cej.2018.07.146
  46. Shishevan, F.A., Akbulut, H. and Mohtadi-Bonab, M.A. (2017), "Low velocity impact behavior of basalt fiber-reinforced polymer composites", J. Mater. Eng. Perform., 26(6), 2890-2900. https://doi.org/10.1007/s11665-017-2728-1
  47. Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct. Int. J., 23(6), 623-631.
  48. Sui, C., Pan, Z., Headrick, R.J., Yang, Y., Wang, C., Yuan, J. and Lou, J. (2018), "Aligned-SWCNT film laminated nanocomposites: Role of the film on mechanical and electrical properties", Carbon, 139, 680-687. https://doi.org/10.1016/j.carbon.2018.07.025
  49. Tahouneh, V. (2018), "3-D vibration analysis of FGMWCNTs/phenolic sandwich sectorial plates", Steel Compos. Struct. Int., J, 26(5), 649-662.
  50. Tang, L.C., Zhang, H., Han, J.H., Wu, X.P. and Zhang, Z. (2011), "Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes", Compos. Sci. Technol., 72(1), 7-13. https://doi.org/10.1016/j.compscitech.2011.07.016
  51. Wang, G., Wei, X., Tanaka, T. and Kataura, H. (2018), "Facile synthesis of guar gum gel for the separation of metallic and semiconducting single-wall carbon nanotubes", Carbon, 129, 745-749. https://doi.org/10.1016/j.carbon.2017.12.064
  52. Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971
  53. Xu, Z., Yue, M., Chen, L., Zhou, B., Shan, M., Niu, J. and Qian, X. (2014), "A facile preparation of edge etching, porous and highly reactive graphene nanosheets via ozone treatment at a moderate temperature", Chem. Eng. J., 240, 187-194. https://doi.org/10.1016/j.cej.2013.11.045
  54. Yim, Y.J., Rhee, K.Y. and Park, S.J. (2015), "Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites", Compos. Part B. Eng., 76, 286-291. https://doi.org/10.1016/j.compositesb.2015.01.052
  55. Zhang, Y., Yu, C., Chu, P.K., Lv, F., Zhang, C., Ji, J. and Wang, H. (2012), "Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites", Mater. Chem. Phys., 133(2-3), 845-849. https://doi.org/10.1016/j.matchemphys.2012.01.105