References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. http://dx.doi.org/10.12989/scs.2017.25.6.693
- Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F. (2015), "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams", Compos. Part B Eng., 83, 226-241. https://doi.org/10.1016/j.compositesb.2015.08.038
- Arani, A.G., Maraghi, Z.K., Mozdianfard, M.R. and Shajari, A.R. (2010), "Thermo-piezo-magneto-mechanical stresses analysis of FGPM hollow rotating thin disk", Int. J. Mech. Mater. Des., 6(4), 341-349. https://doi.org/10.1007/s10999-010-9141-3
- Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. http://dx.doi.org/10.12989/scs.2015.18.1.187
- Barati, M.R. (2017), "On non-linear vibrations of flexoelectric nanobeams", Int. J. Eng. Sci., 121, 143-153. https://doi.org/10.1016/j.ijengsci.2017.09.001
- Bhattacharya, S. and Debabrata, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052
- Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025
- Chen, X.C., Zhang, X.L., Lu, Y.X., et al. (2019), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", Int. J. Mech. Sci., 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001
- Dai, T. and Dai, H.L. (2017), "Analysis of a rotating fgmee circular disk with variable thickness under thermal environment", Appl. Math. Model, 45, 900-924. https://doi.org/10.1016/j.apm.2017.01.007
- Dai, H., Yue, X., Yuan, J. and Atluri, S.N. (2014), "A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity", J. Compos. Phys., 270(3), 214-237. https://doi.org/10.1016/j.jcp.2014.03.063
- Dehrouyeh-Semnani, A.M. (2017), "On boundary conditions for thermally loaded FG beams", Int. J. Eng. Sci., 119, 109-127. https://doi.org/10.1016/j.ijengsci.2017.06.017
- Dehrouyeh-Semnani, A.M. (2018), "On the thermally induced non-linear response of functionally graded beams", Int. J. Eng. Sci., 125, 53-74. https://doi.org/10.1016/j.ijengsci.2017.12.001
- Dehrouyeh-Semnani, A.M. and Bahrami, A. (2016), "On sizedependent Timoshenko beam element based on modified couple stress theory", Int. J. Eng. Sci., 107, 134-148. https://doi.org/10.1016/j.ijengsci.2016.07.006
- Dehrouyeh-Semnani, A.M., Dehrouyeh, M., Torabi-Kafshgari, M. and Nikkhah-Bahrami, M. (2015), "An investigation into size-dependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams", Int. J. Eng. Sci., 96, 68-85. https://doi.org/10.1016/j.ijengsci.2015.07.008
- Dehrouyeh-Semnani, A.M., Mostafaei, H. and Nikkhah, M., (2016), "Free flexural vibration of geometrically imperfect functionally graded microbeams", Int. J. Eng. Sci., 105, 56-79. https://doi.org/10.1016/j.ijengsci.2016.05.002
- Dehrouyeh-Semnani, A.M., Mostafaei, H., Dehrouyeh, M. and Nikkhah-Bahrami, M. (2017), "Thermal pre- and post-snap-through buckling of a geometrically imperfect doubly-clamped microbeam made of temperature-dependent functionally graded materials", Compos. Struct., 170, 122-134. https://doi.org/10.1016/j.compstruct.2017.03.003
- Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater Research Express, 4(2).
- Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
- Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1-12. https://doi.org/10.1007/s13369-015-1722-x
- Ebrahimi, F. and Barati, M.R. (2016c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
- Ebrahimi, F. and Barati, M.R. (2017), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 25(11), 953-963. https://doi.org/10.1080/15376494.2017.1329467
- El-Borgi, S., Rajendran, P., Friswell, M.I., Trabelssi, M. and Reddy, J.N. (2018), "Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory", Compos. Struct., 186, 274-292. https://doi.org/10.1016/j.compstruct.2017.12.002
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99(5), 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007
- Farajpour, A., Ghayesh, H.M. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006
- Farajpour, A., Ghayesh, M.H, and Farokhi, H. (2019), "Largeamplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes", Int. J. Mech. Sci., 150, 510-525. https://doi.org/10.1016/j.ijmecsci.2018.09.043
- Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. http://dx.doi.org/10.12989/scs.2018.27.1.109
- Ghadiri, M., Rajabpour, A. and Akbarshahi, A. (2017), "Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects", Appl. Math. Model., 50, 676-694. https://doi.org/10.1016/j.apm.2017.06.019
- Ghayesh, M.H. and Farajpour, A. (2018a), "Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory", Int. J. Eng. Sci., 129, 84-95. https://doi.org/10.1016/j.ijengsci.2018.04.003
- Ghayesh, M.H. and Farajpour, A. (2018b), "Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects", Mech. Adv. Mater. Struct., 1-10.
- Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Resonance responses of geometrically imperfect functionally graded extensible microbeams", 12(5), 051002. https://doi.org/10.1115/1.4035214
- Guo, J. and Wang, Y. (2017), "Size-dependent three-phase cylinder model of magnetoelectroelastic nanocomposites with interface effect under antiplane shear", Acta Mech., 229(3), 1-16.
- Hall, K.C., Thomas, J.P. and Clark, W.S. (2015), "Computation of unsteady nonlinear flows in cascades using a harmonic balance technique", Aiaa. J., 40(5), 879-886. https://doi.org/10.2514/2.1754
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. http://dx.doi.org/10.12989/scs.2015.18.1.235
- Hao, F.Q. (2007), "Thermal post-buckling analyses of functionally graded material rod", Appl. Math. Mech., 28(1), 59-67. https://doi.org/10.1007/s10483-007-0107-z
- Jha, D.K., Tarun, K. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96(4), 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
- Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng. A, 362(1), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticityz", J. Mech. Phys. Solids, 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lei, J., He, Y., Guo, S., Li, Z. and Liu, D. (2016), "Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity", Aip Adv., 10, 51-59.
- Li, L., Li, X. and Hu, Y. (2016a), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Li, L., Hu, Y. and Li, X. (2016b), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
- Liebold, C. and Muller, W. (2016), "Comparison of gradient elasticity models for the bending of micromaterials", Compos. Mater. Sci., 116, 52-61. https://doi.org/10.1016/j.commatsci.2015.10.031
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090
- Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006
- Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading", Compos. Struct., 93(2), 831-842. https://doi.org/10.1016/j.compstruct.2010.07.011
- Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S. and Wang, Y.S. (2017), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-20. https://doi.org/10.1016/j.compstruct.2018.05.061
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. http://dx.doi.org/10.12989/scs.2017.25.2.157
- Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
- Miyamoto, Y., Kaysser, W.A. and Rabin, B.H. (2001), "Functionally graded materials", Encyclopedia Mater, Sci. Tech., 44(497), 3407-3413.
- Mook, D. and Nayfeh, A. (1979), Nonlinear Oscillations, John Wiley & Sons, New York, NY, USA.
- Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded euler-bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal timoshenko beam theory", Int. J. Eng. Sci., 77(7), 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Saadatfar, M. and Aghaie-Khafri, M. (2014), "Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation", Smart Mater. Struct., 23(3), 35004-35016. https://doi.org/10.1088/0964-1726/23/3/035004
- Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with gpls", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
- She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
- She, G.L., Yuan, F.G. and Ren, Y.R. (2018b), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002
- She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018c), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), p. 368. https://doi.org/10.1140/epjp/i2018-12196-5
- She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018d), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063
- She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64(1), 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Tang, C. and Alici, G. (2011a), "Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: I. Experimental determination of length-scale factors", J. Phys. D. Appl. Phys., 44(33), 335501. https://doi.org/10.1088/0022-3727/44/33/335501
- Tang, C. and Alici, G. (2011b), "Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy", J. Phys. D. Appl. Phys., 44(33), 335502. https://doi.org/10.1088/0022-3727/44/33/335502
- Tao, M.A., Zhao, Z.M., Liu, L.X., Gao, C. and Huang, X.G. (2012), "The research development and future application of functionally gradient materials", Sci. Tech. Chem. Ind.
- Thai, S., Thai, H.T., Vo, T.P. and Patel, V.I. (2018), "A simple shear deformation theory for nonlocal beams", Compo. Struct., 1, 262-270.
- Trinh, L.C., Nguyen, H.X., Vo, T.P. and Nguyen, T.K (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033
- Wu, H.L., Kitipornchai, S. and Yang, J. (2016), "Thermal Buckling and Postbuckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Beams", Appl. Mech., Mater., 846, 182-187. https://doi.org/10.4028/www.scientific.net/AMM.846.182
- Xiao, W.S., Gao, Y. and Zhu, H.P. (2018), "Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams", Microsyst. Technol. https://doi.org/10.1007/s00542-018-4145-2
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zhang, D.G. (2013), "Nonlinear bending analysis of fgm beams based on physical neutral surface and high order shear deformation theory," Compos. Struct., 100(5), 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024
- Zhang, D.G. (2015), "Nonlinear static analysis of fgm infinite cylindrical shallow shells based on physical neutral surface and high order shear deformation theory", Appl. Math. Model., 39(5-6), 1587-1596. https://doi.org/10.1016/j.apm.2014.09.023
- Zhang, P. and Fu, Y. (2013), "A higher-order beam model for tubes", Eur. J. Mech. A Solids, 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009
- Zhang, D.G. and Zhou, Y.H. (2009), "A theoretical analysis of fgm thin plates based on physical neutral surface", Compos. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016
- Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.031
- Zhou, J. (1986), Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China.
Cited by
- Finite Element Modeling for Static Bending Behaviors of Rotating FGM Porous Beams with Geometrical Imperfections Resting on Elastic Foundation and Subjected to Axial Compression vol.2021, 2019, https://doi.org/10.1155/2021/3835440
- On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.533
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.271
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157