그림 1. 칼만 필터의 흐름도 Fig. 1. Overall flowchart of Kalman filter
그림 2. 시스템 전체 흐름도 Fig. 2. System flowchart
그림 3. 제안 방법의 흐름도 Fig. 3. Flowchart of proposed method
그림 4. 다양한 배경의 학습 데이터 Fig. 4. Examples of training data
그림 5. IoU 계산 및 다양한 IoU 값에 대한 평가 Fig. 5. Calculation of IoU and evaluation of the various IoU values
그림 6. YOLO v2 네트워크 IoU 값 그래프 Fig. 6. IoU results of YOLO v2 network
그림 7. YOLO v2 네트워크와 제안 방법의 IoU 값 비교 그래프 Fig. 7. Comparison of proposed method and YOLO v2 with IoU results
그림 8. YOLO v2의 탐지 실패 결과와 제안 방법의 추적 성공 결과의 예 Fig. 8. Examples of detection failure (YOLO v2) and tracking success (Proposed method)
표 1. 탐지 시스템 네트워크 구성 Table 1. The detection system network
References
- Teal Group, 2014 Market Profile and Forecast, World Unmanned aerial Vehicle Systems, 2014
- Choi Youngchul, Ahn Hyosung. (2015). Dron's current and technology development trends and prospects. The world of electricity, 64(12), 20-25.
- Eric N. Johnson, Anthony J. Calise, Yoko Watanabe, Jincheol Ha, and James C. Neidhoefer, 2007, "Real-Time Vision-Based Relative Aircraft Navigation," Journal of Aerospace Computing, Information, and Communication, Vol.4, pp.707-738 https://doi.org/10.2514/1.23410
- John Lai, Luis Mejias, and Jason J. Ford, 2011, "Airborne Vision-Based Collision-Detection System," Journal of Field Robotics, Vol.28, Issue 2, pp.137-157. https://doi.org/10.1002/rob.20359
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- Schmidhuber, Jurgen. "Deep learning in neural networks: An overview." Neural networks 61 (2015): 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Gidaris, Spyros, and Nikos Komodakis. "Object detection via a multi-region and semantic segmentation-aware cnn model." Proceedings of the IEEE International Conference on Computer Vision. 2015.
- Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- Brown, Robert Grover, and Patrick YC Hwang. Introduction to random signals and applied Kalman filtering. Vol. 3. New York: Wiley, 1992.
- Ristic, Branko, Sanjeev Arulampalam, and Neil Gordon. "Beyond the Kalman filter." IEEE Aerospace and Electronic Systems Magazine 19.7 (2004): 37-38.
- Haykin, Simon. Kalman filtering and neural networks. Vol. 47. John Wiley & Sons, 2004.
- Peterfreund, Natan. "Robust tracking of position and velocity with Kalman snakes." IEEE transactions on pattern analysis and machine intelligence 21.6 (1999): 564-569. https://doi.org/10.1109/34.771328
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436. https://doi.org/10.1038/nature14539
- Deng, Li, and Dong Yu. "Deep learning: methods and applications." Foundations and Trends(R) in Signal Processing 7.3-4 (2014): 197-387. https://doi.org/10.1561/2000000039
- Mayer-Schonberger, Viktor, and Kenneth Cukier. Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, 2013.
- Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." Proceedings of the 27th international conference on machine learning (ICML-10). 2010.
- Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
- Lowe, David G. "Object recognition from local scale-invariant features." Computer vision, 1999. The proceedings of the seventh IEEE international conference on. Vol. 2. Ieee, 1999.
- Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005.
- Bouguet, Jean-Yves. "Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm." Intel Corporation 5.1-10 (2001): 4.
- Lienhart, Rainer, and Jochen Maydt. "An extended set of haar-like features for rapid object detection." Proceedings. International Conference on Image Processing. Vol. 1. IEEE, 2002.
- He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE transactions on pattern analysis and machine intelligence 37.9 (2015): 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.
- Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
- Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.
- Everingham, Mark, et al. "The pascal visual object classes (voc) challenge." International journal of computer vision 88.2 (2010): 303-338. https://doi.org/10.1007/s11263-009-0275-4
- Abadi, Martin, et al. "Tensorflow: A system for large-scale machine learning." 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016.
- Bradski, Gary, and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV library." O'Reilly Media, Inc.", 2008.