East Asian Math. J.
Vol. 35 (2019), No. 3, pp. 277-283
YNMS
http://dx.doi.org/10.7858/eamj.2019.023

A REMARK ON NILPOTENTS

Hai-lan Jin and Zhelin Piao*

Abstract

In this article we show that direct limits do not preserve the property that the Wedderburn radical contains all nilpotents, comparing the fact that the NI property is preserved by direct limits.

Throughout this note every ring is an associative ring with identity unless otherwise stated. Let R be a ring. A nilpotent element is also said to be a nilpotent for short. We use $N(R), N^{*}(R)$, and $W(R)$ to denote the set of all nilpotents and the upper nilradical (i.e., the sum of all nil ideals), and the Wedderburn radical (i.e., the sum of all nilpotent ideals) of R, respectively. $W(R) \subseteq N^{*}(R) \subseteq N(R)$ can be shown easily. Denote the n by n full (resp., upper triangular) matrix ring over R by $\operatorname{Mat}_{n}(R)$ (resp., $T_{n}(R)$); and write $D_{n}(R)=\left\{\left(a_{i j}\right) \in T_{n}(R) \mid a_{11}=\cdots=a_{n n}\right\}$. Use $e_{i j}$ for the matrix with (i, j)-entry 1 and zeros elsewhere.

1. Direct limits

A ring is usually called reduced if it has no nonzero nilpotents. Following Marks [2], a ring R is called $N I$ if $N(R)=N^{*}(R)$. It is obvious that a ring R is NI if and only if $R / N^{*}(R)$ is reduced.

The proof of the following fact is simply stated in [1, Proposition 1.1]. But, for our purpose, we need a concrete one as is written in the following.

Proposition 1.1. The direct limit preserves the NI property.
Proof. Let $D=\left\{R_{i}, \alpha_{i j}\right\}$ be a direct system of NI rings R_{i} for $i \in I$, and ring homomorphisms $\alpha_{i j}: R_{i} \rightarrow R_{j}$ for each $i \leq j$ satisfying $\alpha_{i j}(1)=1$, where I is a directed partially ordered set. Set $R=\underline{\longrightarrow} R_{i}$ be the direct limit of D with $\iota_{i}: R_{i} \rightarrow R$ and $\iota_{j} \alpha_{i j}=\iota_{i}$.

[^0]We will prove that R is an NI ring. Take $x, y \in R$. Then $x=\iota_{i}\left(x_{i}\right)$, $y=\iota_{j}\left(y_{j}\right)$ for some $i, j \in I$; and moreover there is $k \in I$ such that $i \leq k, j \leq k$, and $x=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right)\right), y=\iota_{k}\left(\alpha_{j k}\left(y_{j}\right)\right)$.

Define

$$
x+y=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right)+\alpha_{j k}\left(y_{j}\right)\right) \text { and } x y=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right) \alpha_{j k}\left(y_{j}\right)\right)
$$

where $\alpha_{i k}\left(x_{i}\right)$ and $\alpha_{j k}\left(y_{j}\right)$ are in R_{k}. Then R forms a ring with $0=\iota_{i}(0)$ and $1=\iota_{i}(1)$.

Suppose $x, y \in N(R)$. Then $x^{n}=0=y^{m}$ for some positive integers m, n. There are $i, j, k \in I$ such that $x=\iota_{i}\left(x_{i}\right), y=\iota_{j}\left(y_{j}\right), i \leq k, j \leq k$. Moreover

$$
\alpha_{i k}\left(x_{i}\right)^{n}=\alpha_{i k}\left(x_{i}^{n}\right)=0 \text { and } \alpha_{j k}\left(y_{j}^{m}\right)=\alpha_{j k}\left(y_{j}\right)^{m}=0
$$

entailing $\alpha_{i k}\left(x_{i}\right), \alpha_{j k}\left(y_{j}\right) \in N\left(R_{k}\right)$. But R_{k} is NI and so $\alpha_{i k}\left(x_{i}\right)-\alpha_{j k}\left(y_{j}\right) \in$ $N\left(R_{k}\right)$. Then $\left(\alpha_{i k}\left(x_{i}\right)-\alpha_{j k}\left(y_{j}\right)\right)^{t}=0$ for some positive integer t; hence we get

$$
(x-y)^{t}=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right)-\alpha_{j k}\left(y_{j}\right)\right)^{t}=\iota_{k}\left(\left(\alpha_{i k}\left(x_{i}\right)-\alpha_{j k}\left(y_{j}\right)\right)^{t}\right)=\iota_{k}(0)=0
$$

entailing $x-y \in N(R)$. Take $r \in R$. Then there exist $s, h \in I$ such that $r=$ $\iota_{s}\left(r_{s}\right), i \leq h, s \leq h$. Note $r x=\iota_{h}\left(r_{h} x_{h}\right)$ and $x r=\iota_{h}\left(x_{h} r_{h}\right)$ with $x_{h}=\alpha_{i h}\left(x_{i}\right)$ and $r_{h}=\alpha_{s h}\left(r_{s}\right)$. Since $x_{h} \in N\left(R_{h}\right)$ as above and R_{h} is NI, $\left(r_{h} x_{h}\right)^{t_{1}}=0=$ $\left(x_{h} r_{h}\right)^{t_{2}}$ for some positive integers t_{1}, t_{2}. Then we obtain

$$
(r x)^{t_{1}}=\iota_{h}\left(r_{h} x_{h}\right)^{t_{1}}=\iota_{h}\left(\left(r_{h} x_{h}\right)^{t_{1}}\right)=\iota_{h}(0)=0
$$

and similarly $(x r)^{t_{2}}=0$. Therefore $r x, x r$ are contained in $N(R)$, proving that R is an NI ring.

A ring R is usually called directly finite (or Dedekind finite) if $a b=1$ for $a, b \in R$ implies $b a=1$. NI rings are directly finite by [1, Proposition 2.7].

Proposition 1.2. The direct limit preserves the directly finite property.
Proof. Applying the proof of Proposition 1.1, let $D=\left\{R_{i}, \alpha_{i j}\right\}$ be a direct system of directly finite rings R_{i} for $i \in I$, and ring homomorphisms $\alpha_{i j}: R_{i} \rightarrow$ R_{j} for each $i \leq j$ satisfying $\alpha_{i j}(1)=1$, where I is a directed partially ordered set. Set $R=\underline{\longrightarrow} R_{i}$ be the direct limit of D with $\iota_{i}: R_{i} \rightarrow R$ and $\iota_{j} \alpha_{i j}=\iota_{i}$. We will use the addition and multiplication which are defined in the proof of Proposition 1.1.

We will prove that R is a directly finite ring. Let $x y=1$ for $x, y \in R$. Then $x=\iota_{i}\left(x_{i}\right), y=\iota_{j}\left(y_{j}\right)$ for some $i, j \in I$; and moreover there is $k \in I$ such that $i \leq k, j \leq k$, and $x=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right)\right), y=\iota_{k}\left(\alpha_{j k}\left(y_{j}\right)\right)$, where $\alpha_{i k}\left(x_{i}\right)$ and $\alpha_{j k}\left(y_{j}\right)$ are in R_{k}. So $x y=1$ implies

$$
1=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right)\right) \iota_{k}\left(\alpha_{j k}\left(y_{j}\right)\right)=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right) \alpha_{j k}\left(y_{j}\right)\right)
$$

entailing $\alpha_{i k}\left(x_{i}\right) \alpha_{j k}\left(y_{j}\right)=1$.

Since R_{k} are directly finite, we get $\alpha_{j k}\left(y_{j}\right) \alpha_{i k}\left(x_{i}\right)=1$ and $\iota_{k}\left(\alpha_{j k}\left(y_{j}\right) \alpha_{i k}\left(x_{i}\right)\right)=$ 1. Whence we now have

$$
\begin{aligned}
1=x y & =\iota_{k}\left(\alpha_{i k}\left(x_{i}\right)\right) \iota_{k}\left(\alpha_{j k}\left(y_{j}\right)\right)=\iota_{k}\left(\alpha_{i k}\left(x_{i}\right) \alpha_{j k}\left(y_{j}\right)\right)=\iota_{k}\left(\alpha_{j k}\left(y_{j}\right) \alpha_{i k}\left(x_{i}\right)\right) \\
& =\iota_{k}\left(\alpha_{j k}\left(y_{j}\right)\right) \iota_{k}\left(\alpha_{i k}\left(x_{i}\right)\right)=y x .
\end{aligned}
$$

Therefore R is a directly finite ring.

2. NWR property

In this section we prove that the NWR property is not preserved by direct limits, comparing with the fact that the NI property is preserved by direct limits by Proposition 1.1.

An element u of a ring R is right regular if $u r=0$ implies $r=0$ for $r \in R$. Similarly, left regular elements can be defined. An element is regular if it is both left and right regular (and hence not a zero divisor).

Lemma 2.1. Let S be a domain and $n \geq 2$. Then every matrix in $D_{n}(S)$ with nonzero diagonal is regular.

Proof. Let $A=\left(\begin{array}{ccccc}a & a_{12} & a_{13} & \cdots & a_{1 n} \\ 0 & a & a_{23} & \cdots & a_{2 n} \\ 0 & 0 & a & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a\end{array}\right) \in R$ with a nonzero. Assume $A B=$
0 for $B=\left(\begin{array}{ccccc}b & b_{12} & b_{13} & \cdots & b_{1 n} \\ 0 & b & b_{23} & \cdots & b_{2 n} \\ 0 & 0 & b & \cdots & b_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b\end{array}\right) \in R$. Then clearly $b=0$. Assume $B \neq 0$.
Set s be largest such that the s-th row contains a nonzero entry, and t be largest such that $b_{s t} \neq 0$ in the s-th row. Then the (s, t)-entry of $A B$ is $a b_{s t}$ but this is nonzero because S is a domain, contrary to $A B=0$. Thus $B=0$.

Next assume that $B A=0$ and $B \neq 0$. Then $b=0$ clearly. Set i be smallest such that the i-th row contains a nonzero entry, and j be smallest such that $b_{i j} \neq 0$ in the i-th row. Then the (i, j)-entry of $B A$ is $b_{i j} a$ but this is nonzero because S is a domain, contrary to $B A=0$. Thus $B=0$.

Summarizing, A is regular in R.
A ring R shall be said to be $N W R$ if $N(R)=W(R)$. It is obvious that a ring R is NWR if and only if $R / W(R)$ is reduced. NWR rings are clearly NI, but the converse need not hold by Proposition 1.1 and Theorem 2.2 to follow.

Let R be a ring and $a \in R$ with $a^{n}=0$ for some $n \geq 1$. Here if n is the least with respect to $a^{n}=0$ then n is called the index (of nilpotency) of a. Let S be a nil subset of R. If $S^{k} \neq 0$ for all $k \geq 1$ then S is said to be not of bounded index (of nilpotency).

Theorem 2.2. The NWR property is not preserved by direct limits.
Proof. Let D be a division ring of characteristic zero and $n \geq 1$. We apply the construction in [1, Example 1.2]. Set $R_{n}=D_{2^{n}}(D)$. Then

$$
W\left(R_{n}\right)=N\left(R_{n}\right)=\left\{\left(a_{i j}\right) \in D_{2^{n}}(D) \mid a_{i i}=0 \text { for all } i\right\}
$$

and so R_{n} is NWR (hence NI). Next define a map $\sigma: R_{n} \rightarrow R_{n+1}$ with $A \mapsto$ $\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right)$ and set R be the direct limit of R_{n} 's. Then R is NI by Proposition 1 . Note that R_{n} can be considered as a subring of R_{n+1} via σ, i.e., $A=\sigma(A)$ for $A \in R_{n}$. This provides us with $R=\cup_{n=1}^{\infty} R_{n}$.

Note first that every nilpotent matrix is of zero diagonal by Lemma 2.1. Take

$$
a=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(e_{12}+e_{23}+e_{34}\right) \in R_{2}
$$

Then a has index 4 clearly. We will show $a \notin W(R)$ (i.e., R is not NWR).
Compute matrices in RaR. Notice that

$$
a=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text { in } R_{3},
$$

hence $R a R$ contains

$$
e_{12}+e_{23}+e_{34}+e_{56}+e_{67}+e_{78}
$$

Whence RaR also contains

$$
b=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

by multiplying a by $e_{i j}$'s on the left and right. Then we have

$$
b^{2}=\left(\begin{array}{cccc|ccc}
0 & 0 & a_{13} & a_{14} & & & \\
0 & 0 & 0 & 1 & & (*) & \\
0 & 0 & 0 & 0 & & & \\
0 & 0 & 0 & 0 & & & \\
& & & 0 & 1 & 2 \\
& & & & 0 & & 0 \\
0 & 0 & 1 \\
& & & & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and } b^{4}=\left(\begin{array}{cc|c}
& \\
O & (* *) \\
& O & O
\end{array}\right)
$$

where O 's are zero matrices. In this situation note that $(* *) \neq 0$ since $a_{13} \neq 0$ and $a_{14} \neq 0$, and that the third and fourth rows of the matrix ($*$) are both nonzero. It then follows that $b^{8}=\left(b^{4}\right)^{2}=0$ and so the index of b is 8 .

Write $a_{2}=a\left(\right.$ in $\left.R_{3}\right), a_{3}=b$, and proceed in this manner. Then we can obtain

$$
a_{3} \in R a_{2} R, a_{4} \in R a_{3} R, \ldots, a_{n} \in R a_{n-1} R, \ldots
$$

such that

with

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
\vdots & 0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \cdots & \ddots & 1 \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right) \text { and } B=\left(\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & \cdots & 1 \\
0 & 1 & \cdots & \cdots & 1
\end{array}\right) \in R_{n-1}
$$

where $\left(2^{2}, 2^{2}+1\right)$-entry, $\left(2^{3}+2^{2}, 2^{3}+2^{2}+1\right)$-entry, $\ldots,\left(2^{n-2}+2^{n-3}+\cdots+\right.$ $2^{2}, 2^{n-2}+2^{n-3}+\cdots+2^{2}+1$)-entry in A are all zero. Note that the index of a_{n} is 2^{n}.

Next we get

$$
a_{n+1}=\left(\begin{array}{c|c}
& \\
a_{n} & C \\
O & a_{n}
\end{array}\right) \text { with } C=\left(\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & \cdots & 1 \\
0 & 1 & \cdots & \cdots & 1
\end{array}\right)
$$

in $R a R$ by the same method. Notice that

since $\left(1,2^{n}\right)$-entry and the 2^{n}-th row of $a_{n+1}^{2^{n-1}}$ are nonzero. So a_{n+1} has index 2^{n+1}, and consequently $R a R$ is not of bouned index. Thus $R a R$ is not contained in $W(R)$, that is, $a \notin W(R)$. Therefore R is not NWR.

The following is an application of [1, Proposition 4.1] onto NWR rings.
Proposition 2.3. (1) A ring R is $N W R$ if and only if $T_{n}(R)$ is $N W R$ for all $n \geq 2$.
(2) Let R, S be rings and ${ }_{R} M_{S}$ be an (R, S)-bimodule. $\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ is $N W R$ if and only if R and S are both $N W R$.

Proof. (1) Let $n \geq 2$. Note first

$$
N\left(T_{n}(R)\right)=\left\{\left(a_{i j}\right) \in T_{n}(R) \mid a_{i i} \in N(R) \text { for all } i=1, \ldots, n\right\} .
$$

So we get that $N(R)=W(R)$ if and only if

$$
N\left(T_{n}(R)\right)=\left\{\left(a_{i j}\right) \in T_{n}(R) \mid a_{i i} \in W(R) \text { for all } i=1, \ldots, n\right\}
$$

This implies that R is NWR if and only if $T_{n}(R)$ is NWR.
(2) can be proved similarly.

However $\operatorname{Mat}_{n}(R)$, for any ring R and $n \geq 2$, cannot be NWR because $\left.N\left(\operatorname{Mat}_{(} R\right)\right)$ cannot form an ideal.

Acknowledgments. The authors thank the referee for very careful reading of the manuscript and many valuable suggestions that improved the paper by much.

References

[1] S.U. Hwang, Y.C. Jeon, Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), 186-199.
[2] G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), 2113-2123.
Hai-Lan Jin
Department of Mathematics, Yanbian University, Yanji 133002, China
E-mail address: hljin98@ybu.edu.cn
Zhelin Piao
Department of Mathematics, Yanbian University, Yanji 133002, China
E-mail address: zlpiao@ybu.edu.cn

[^0]: Received January 6, 2019; Accepted February 11, 2019.
 2010 Mathematics Subject Classification. 16N40, 16S50.
 Key words and phrases. NWR ring, NI ring, Wedderburn radical, nilpotent.

 * Corresponding author.

