참고문헌
- Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059-64. https://doi.org/10.1093/gerona/61.10.1059
- Faulkner JA, Larkin LM, Claflin DR, et al. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34(11):1091-6. https://doi.org/10.1111/j.1440-1681.2007.04752.x
- Dolbow DR, Gorgey AS. Effects of use and disuse on non-paralyzed and paralyzed skeletal muscles. Aging Dis. 2016;7(1):68-80. https://doi.org/10.14336/AD.2015.0826
- Sacco A, Doyonnas R, Kraft P, et al. Self-renewal and expansion of single transplanted muscle stem cells. 2008;456(7221):502. https://doi.org/10.1038/nature07384
- Loebel C, Burdick JA. Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell. 2018;22(3):325-39. https://doi.org/10.1016/j.stem.2018.01.014
- Florini JR, Magri KA. Effects of growth factors on myogenic differentiation. Am J Physiol. 1989;256(4 Pt 1):C701-11. https://doi.org/10.1152/ajpcell.1989.256.4.C701
- Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29. https://doi.org/10.1186/1479-5876-9-29
- Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17-26. https://doi.org/10.1016/j.stem.2009.06.016
- Kshitiz, Park J, Kim P, et al. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb). 2012;4(9):1008-18. https://doi.org/10.1039/c2ib20080e
- Bassett CA, Pawluk RJ. Electrical behavior of cartilage during loading. Science. 1972;178(4064):982-3. https://doi.org/10.1126/science.178.4064.982
- Foulds I, Barker A. Human skin battery potentials and their possible role in wound healing. The British Journal of Dermatology. 1983;109(5):515-22. https://doi.org/10.1111/j.1365-2133.1983.tb07673.x
- Smith SD, McLeod BR, Liboff AR, et al. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics. 1987;8(3):215-27. https://doi.org/10.1002/bem.2250080302
- Bezanilla F. How membrane proteins sense voltage. Nature Reviews Molecular Cell Biology. 2008;9:323. https://doi.org/10.1038/nrm2376
- Nakagawa S, Maeda S, Tsukihara T. Structural and functional studies of gap junction channels. Curr Opin Struct Biol. 2010;20(4):423-30. https://doi.org/10.1016/j.sbi.2010.05.003
- Nikolic N, Gorgens SW, Thoresen GH, et al. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol (Oxf). 2017;220(3):310-31. https://doi.org/10.1111/apha.12830
- Kawahara Y, Yamaoka K, Iwata M, et al. Novel electrical stimulation sets the cultured myoblast contractile function to 'on'. Pathobiology. 2006;73(6):288-94. https://doi.org/10.1159/000099123
- Hashimoto S, Sato F, Uemura R, et al. Effect of Pulsatile Electric Field on Cultured Muscle Cells in Vitro. 2012;10(1):1-6.
- Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 2012;4(2).
- Miller JB. Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. J Cell Biol. 1990;111(3):1149-59. https://doi.org/10.1083/jcb.111.3.1149
- Pereira-Leal JB, Seabra MCJJomb. Evolution of the Rab family of small GTP-binding proteins. 2001;313(4):889-901. https://doi.org/10.1006/jmbi.2001.5072
- Takai Y, Sasaki T, Matozaki TJPr. Small GTP-binding proteins. 2001;81(1):153-208. https://doi.org/10.1152/physrev.2001.81.1.153
- Colicelli JJSS. Human RAS superfamily proteins and related GTPases. 2004;2004(250):re13-re.
- Johnson DS, Chen YHJCoip. Ras family of small GTPases in immunity and inflammation. 2012;12(4):458-63. https://doi.org/10.1016/j.coph.2012.02.003
- Krontiris TG, Cooper GMJPotNAoS. Transforming activity of human tumor DNAs. 1981;78(2):1181-4. https://doi.org/10.1073/pnas.78.2.1181
- Milburn MV, Tong L, Brunger A, et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. 1990;247(4945):939-45. https://doi.org/10.1126/science.2406906
- Pylayeva-Gupta Y, Grabocka E, Bar-Sagi DJNRC. RAS oncogenes: weaving a tumorigenic web. 2011;11(11):761. https://doi.org/10.1038/nrc3106
- Parri M, Chiarugi PJCC, Signaling. Rac and Rho GTPases in cancer cell motility control. 2010;8(1):23. https://doi.org/10.1186/1478-811X-8-23
- Rousseau M, Gaugler M-H, Rodallec A, et al. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration. 2011;414(4):750-5. https://doi.org/10.1016/j.bbrc.2011.09.150
- Spiering D, Hodgson LJCa, migration. Dynamics of the Rho-family small GTPases in actin regulation and motility. 2011;5(2):170-80. https://doi.org/10.4161/cam.5.2.14403
- Wei L, Zhou W, Croissant JD, et al. RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. 1998;273(46):30287-94. https://doi.org/10.1074/jbc.273.46.30287
- Charrasse S, Comunale F, Grumbach Y, et al. RhoA GTPase regulates M-cadherin activity and myoblast fusion. 2006;17(2):749-59. https://doi.org/10.1091/mbc.e05-04-0284
- Feng H, Li Y, Yin Y, et al. Protein kinase A-dependent phosphorylation of Dock180 at serine residue 1250 is important for glioma growth and invasion stimulated by platelet derived-growth factor receptor alpha. Neuro Oncol. 2015;17(6):832-42. https://doi.org/10.1093/neuonc/nou323