DOI QR코드

DOI QR Code

효과적인 뉴로피드백 훈련을 위한 임계값 설정 기법

Auto Thresholding for Efficient Neurofeedback Trainning

  • 투고 : 2019.05.20
  • 심사 : 2019.05.30
  • 발행 : 2019.06.01

초록

본 논문에서는 임계값 자동 설정 기능을 지원하는 효과적인 뉴로피드백 시스템을 제안한다. 실시간 뇌파의 신호 처리를 통해 보상 주파수와 억제 주파수에 대한 정확한 피드백을 생성하는 알고리즘을 설계하고, 이를 기반으로 치료사가 정한 목표 성공률을 얻기 위해 자동으로 임계값을 계산하는 기술을 제시한다. 본 논문에서 제시한 자동 임계값 설정 기술은 피험자의 이전 뇌파 패턴을 분석하여 목표 성공률과의 차이를 최소로하는 최적의 임계값을 계산한다. 다양한 조건의 실험을 통해 제안된 기법의 효율성과 안정성을 입증한다.

We develop a complete system that includes data collection, signal processing, and real-time interaction for effective neurofeedback training. Our system supports a sophisticated technique to find threshold values which are quite important for effective neurofeedback system. A therapist specifies a target success rate of positive feedback, allowable error and time. The system computes a current success rate and compare it with the target one. If the difference between two rates exceeds the allowable error for allowable time, we find an optimum threshold value to obtain the target success rate by using numerical optimization technique. We conduct several experiments by varying input parameters: target success rate, allowable error and time, and demonstrate the effectiveness of our technique by showing the desired target success rate is stably obtained and systematically controlled by input parameters.

키워드

참고문헌

  1. L. Farwell and E. Donchin, "Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials," Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6, pp. 510-523, 1988. https://doi.org/10.1016/0013-4694(88)90149-6
  2. D. C. Hammond, S. Stockdale, D. Hoffman, M. E. Ayers, and J. Nash, "Adverse reactions and potential iatrogenic effects in neurofeedback training," Journal of Neurotherapy, vol. 4, no. 4, pp. 57-69, 2001. https://doi.org/10.1300/J184v04n04_09
  3. D. Vernon, T. Egner, N. Cooper, T. Compton, C. Neilands, A. Sheri, and J. Gruzelier, "The effect of training distinct neurofeedback protocols on aspects of cognitive performance," International journal of psychophysiology, vol. 47, no. 1, pp. 75-85, 2003. https://doi.org/10.1016/S0167-8760(02)00091-0
  4. T. C. Ferree, P. Luu, G. S. Russell, and D. M. Tucker, "Scalp electrode impedance, infection risk, and EEG data quality," Clinical Neurophysiology, vol. 112, no. 3, pp. 536-544, 2001. https://doi.org/10.1016/S1388-2457(00)00533-2
  5. P. Gloor, "Hans Berger on electroencephalography," American Journal of EEG Technology, vol. 9, no. 1, pp. 1-8, 1969. https://doi.org/10.1080/00029238.1969.11080728
  6. D. P. Nowlis and J. Kamiya, "The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity," Psychophysiology, vol. 6, no. 4, pp. 476-484, 1970. https://doi.org/10.1111/j.1469-8986.1970.tb01756.x
  7. W. Wyrwicka and M. B. Sterman, "Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat," Physiology & Behavior, vol. 3, no. 5, pp. 703-707, 1968. https://doi.org/10.1016/0031-9384(68)90139-X
  8. J. F. Lubar, M. O. Swartwood, J. N. Swartwood, and P. H. O'Donnell, "Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA scores, behavioral ratings, and WISC-R performance," Applied Psychophysiology and Biofeedback, vol. 20, no. 1, pp. 83-99, 1995.
  9. "The learning curves," http://braintrainer.com.
  10. D.Garrett, D.A.Peterson, C.W.Anderson, and M. H. Thaut, "Comparison of linear, nonlinear, and feature selection methods for EEG signal classification," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 141-144, 2003. https://doi.org/10.1109/TNSRE.2003.814441
  11. O. Faust, U. R. Acharya, L. C. Min, and B. H. Sputh, "Automatic identification of epileptic and background EEG signals using frequency domain parameters," International journal of neural systems, vol. 20, no. 02, pp. 159-176, 2010. https://doi.org/10.1142/S0129065710002334
  12. S. Kuperman, B. Johnson, S. Arndt, S. Lindgren, and M. Wolraich, "Quantitative EEG differences in a nonclinical sample of children with ADHD and undifferentiated ADD," Journal of the American Academy of Child & Adolescent Psychiatry, vol. 35, no. 8, pp. 1009-1017, 1996. https://doi.org/10.1097/00004583-199608000-00011
  13. L. M. Oberman, E. M. Hubbard, J. P. McCleery, E. L. Altschuler, V. S. Ramachandran, and J. A. Pineda, "EEG evidence for mirror neuron dysfunction in autism spectrum disorders," Cognitive brain research, vol. 24, no. 2, pp. 190-198, 2005. https://doi.org/10.1016/j.cogbrainres.2005.01.014
  14. L. C. Parra, C. D. Spence, A. D. Gerson, and P. Sajda, "Recipes for the linear analysis of EEG," NeuroImage, vol. 28, no. 2, pp. 326-341, 2005. https://doi.org/10.1016/j.neuroimage.2005.05.032
  15. G. Rodriguez-Bermudez and P. J. Garcia-Laencina, "Analysis of EEG signals using nonlinear dynamics and chaos: a review," Applied Mathematics & Information Sciences, vol. 9, no. 5, p. 2309, 2015. https://doi.org/10.12988/ams.2015.53212
  16. T. Surmeli, A. Ertem, E. Eralp, and I. H. Kos, "Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: a clinical case series," Clinical EEG and Neuroscience, vol. 43, no. 2, pp. 133-144, 2012. https://doi.org/10.1177/1550059411429531
  17. Wang.Qiang, Sourina.Olga, and N. Khoa, "Fractal dimension based neurofeedback in serious games," The Visual Computer, vol. 27, no. 4, pp. 299-309, 2011. https://doi.org/10.1007/s00371-011-0551-5
  18. M. Sterman, L. MacDonald, and R. K. Stone, "Biofeedback training of the sensorimotor electroencephalogram rhythm in man: effects on epilepsy," Epilepsia, vol. 15, no. 3, pp. 395-416, 1974. https://doi.org/10.1111/j.1528-1157.1974.tb04016.x
  19. "EEGer," http://support.eeger.com.
  20. M. Doppelmayr and E. Weber, "Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity," Journal of Neurotherapy, vol. 15, no. 2, pp. 115-129, 2011. https://doi.org/10.1080/10874208.2011.570689
  21. "Biofeedback equipment: ProComp infiniti hardware," http://thoughttechnology.com.
  22. "Bioexplorer," http://www.cyberevolution.com.
  23. T. Ros, M. J. Moseley, P. A. Bloom, L. Benjamin, L. A. Parkinson, and J. H. Gruzelier, "Optimizing microsurgical skills with EEG neurofeedback," BMC neuroscience, vol. 10, no. 1, p. 87, 2009. https://doi.org/10.1186/1471-2202-10-87
  24. M. Arns, I. Feddema, and J. L. Kenemans, "Differential effects of theta/beta and SMR neurofeedback in ADHD on sleep onset latency," Frontiers in human neuroscience, vol. 8, p. 1019, 2014. https://doi.org/10.3389/fnhum.2014.01019
  25. "Neuronflex," http://sun-medi.com.
  26. M. Frigo and S. G. Johnson, "The design and implementation of FFTW3," Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005. https://doi.org/10.1109/JPROC.2004.840301
  27. "Iowa hills software digital and analog filters," http://iowahills.com.
  28. W.-H. Press, S.-A. Teukolsky, W.-T. Vetterling, and B.-P. Flannery, Numerical Recipes in C. Cambridge University Press, 1992.