Figure 1. SEM image of TiO2 hemispheres with 0.5% Cr3+ calcinated at 600 oC.
Figure 2. Mechanism proposed for the action of TiO2.
Figure 3. Difference in the deodorization rates of toluene, trimethylamine and ammonia by TiO2 hemispheres with and without strong acid pretreatment. The values are the averages of three separated experiments.
Table 1. Deodorization rate of toluene, trimethylamine and ammonia by an ABS copolymer coated with Ti/Cr hemispheres.
References
- Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
- Cho, M.; Chung, H.; Choi, W.; Yoon, J. Water Res. 2004, 38, 1069. https://doi.org/10.1016/j.watres.2003.10.029
- Ditta, I. B.; Steele, A.; Liptrot, C.; Tobin, J.; Tyler, J.; Yates, H. M.; Sheel, D. W.; Foster, H. A. Appl. Microbiol. Biotechnol. 2008, 79, 127. https://doi.org/10.1007/s00253-008-1411-8
- Sang, X.; Phan, T. G.; Sugihara, S.; Yagyu, F.; Okitsu, S.; Maneekarn, N.; Muller, W. E. G.; Ushijima, H. Clin. Lab. 2007, 53, 413.
- Shieh, K.-J.; Li, M.; Lee, Y.-H.; Sheu, S.-D.; Liu, Y.-T.; Wang, Y.-C. Nanomedicine 2006, 2, 121. https://doi.org/10.1016/j.nano.2006.04.001
- Wu, P.; Xie, R.; Imlay, J. A.; Shang, J. K. Appl. Catal. B: Environ. 2009, 88, 576. https://doi.org/10.1016/j.apcatb.2008.12.019
- Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. Water Res. 2011, 45, 535. https://doi.org/10.1016/j.watres.2010.09.012
- Kim, M. C. Anal. Sci. Technol. 2011, 24, 493. https://doi.org/10.5806/AST.2011.24.6.493
- Iwasaki, M.; Hara, M.; Kawada, H.; Tada, S.; Ito, J. J. Colloid Interface Sci. 2000, 224, 202. https://doi.org/10.1006/jcis.1999.6694
- Litter, M. I. Appl. Catal. B: Environ. 1999, 23, 89. https://doi.org/10.1016/S0926-3373(99)00069-7
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, K. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
- Yang, S.; Gao, L. J. Am. Ceram. Soc. 2004, 87, 1803. https://doi.org/10.1111/j.1551-2916.2004.01803.x
- Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483. https://doi.org/10.1021/jp030133h
- Wu, P. G.; Ma, C. H.; Shang, J. K. Appl. Phys. A 2005, 81, 1411. https://doi.org/10.1007/s00339-004-3101-4
- Takehara, K.; Yamazaki, K.; Miyazaki, M.; Yamada, Y.; Ruenphet, S.; Jahangir, A.; Shoham, D.; Okamura, M.; Nakamura, M. Virus Res. 2010, 151, 102. https://doi.org/10.1016/j.virusres.2010.03.006
- Li, M.; Huang, Q. Z.; Qiu, D. F.; Jiao, Z. J.; Meng, Z. H.; Shi, H. Z. Chin. Chem. Lett. 2010, 21, 117. https://doi.org/10.1016/j.cclet.2009.06.038
- Sunada, K.; Watanabe, T.; Hashimoto, K. J. Photochem. Photobiol. A: Chem. 2003, 156, 227. https://doi.org/10.1016/S1010-6030(02)00434-3
- Caballero, L.; Whitehead, K. A.; Allen, N. S.; Verran, J. J. Photochem. Photobiol. A: Chem. 2009, 202, 92. https://doi.org/10.1016/j.jphotochem.2008.11.005
- Caruso, F. Chem. Eur. J. 2000, 6, 413. https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9
- Kim, H. R.; Eom, Y.; Lee, T. G.; Shul, Y.-G. Mater. Chem. Phys. 2008, 108, 154. https://doi.org/10.1016/j.matchemphys.2007.09.018
- Cho, B. Bull. Korean Chem. Soc. 2018, 39, 563. https://doi.org/10.1002/bkcs.11411
- Liang, W.; Li, J.; He, H. In Advanced Aspects of Spectroscopy; IntechOpen: 2012, p 341.