DOI QR코드

DOI QR Code

Reaction and Theoretical Study of the Coordination of an N2O-Donor Amino Alcoholic Ligand Toward Group 12 Metals Mixtures

  • 투고 : 2019.01.10
  • 심사 : 2019.02.15
  • 발행 : 2019.06.20

초록

A series of reactions between an amino alcoholic ligand, cis-2-((2-((2-hydroxyethyl)amino)ethyl)amino)cyclohexan-1-ol (HEAC), with the mixtures of group 12 metals including, $HgCl_2/CdCl_2$, $HgCl_2/CdI_2$, $ZnCl_2/CdCl_2$ and $ZnCl_2/CdCl_2/HgCl_2$ was experimentally and theoretically studied to determine the most stable product of these reactions. Furthermore, the Cambridge Structural Database (CSD) studies were done to evaluate the theoretical results. The products were characterized by elemental analysis, FT-IR, Raman, $^1H$ NMR spectroscopy and single-crystal X-ray diffraction. Based on these investigations a binuclear structure of cadmium, [$Cd_2(HEAC)_2({\mu}-Cl)_2Cl_2$] (1), is the most stable product that was formed in all studied reactions between HEAC and metals mixtures. In this structure, the cadmium atom has a $CdN_2O({\mu}-Cl)_2Cl$ environment and distorted octahedral geometry.

키워드

JCGMDC_2019_v63n3_160_f0001.png 이미지

Scheme 1. Structure of the cis-2-((2-((2-hydroxyethyl)amino)ethyl)amino)cyclohexan-1-ol (HEAC).

JCGMDC_2019_v63n3_160_f0002.png 이미지

Figure 1. The ortep diagram of the molecular structure of the complex 1. The ellipsoids are drawn at the 50% probability level.

Table 1. Crystal data and structure refinement for 1

JCGMDC_2019_v63n3_160_t0001.png 이미지

Table 2. Optimized structure for possible homo- and hetero-atomic binuclear compounds of group 12 metals with HEAC along with their CSD average

JCGMDC_2019_v63n3_160_t0002.png 이미지

참고문헌

  1. Allen, F. H. Acta Crystallogr. 2002, B58, 380. https://doi.org/10.1107/S0108768102003890
  2. Tang, X.-Y.; Yu, H.; Gao, B.-B.; Lang, J.-P. Dalton Trans. 2017, 46, 14724. https://doi.org/10.1039/C7DT02679J
  3. He, J.; Zha, M.; Cui, J.; Zeller, M.; Hunter, A. D.; Yiu, S.-M.; Lee, S.-T.; Xu, Z. J. Am. Chem. Soc. 2013, 135, 7807. https://doi.org/10.1021/ja401479j
  4. Park, I.-H.; Kim, J.-Y.; Kim, K.; Lee, S. S. Cryst. Growth Des. 2014, 14, 6012. https://doi.org/10.1021/cg501194n
  5. Li, S.-L.; Wu, J.-Y.; Tian, Y.-P.; Ming, H.; Wang, P.; Jiang, M.-H.; Fun, H.-K. Eur. J. Inorg. Chem. 2006, 14, 2900.
  6. Wang, X.-Q.; Yu, W.-T.; Hou, X.-Q.; Xu, D.; Geng, Y.-L. Acta Crystallogr. 2006, E62, m2333.
  7. Wang, X. Q.; Yu, W. T.; Xu, D.; Zhang, G. H. Acta Crystallogr. 2005, E61, m1147.
  8. Wang, X. Q.; Yu, W. T.; Xu, D.; Sun, H. Q. Acta Crystallogr. 2005, E61, m548.
  9. Chen, W.-T.; Zeng, X.-R.; Liu, D.-S.; Ying, S.-M.; Liu, J.-H. Chin. J. Chem. 2008, 26, 1678. https://doi.org/10.1002/cjoc.200890303
  10. Liu, X.; Wang, X.; Yin, X.; Zhang, S.; Wang, L.; Zhu, L.; Zhang, G.; Xu, D. J. Mater. Chem. C 2014, 2, 723. https://doi.org/10.1039/C3TC31433B
  11. Hallinger, M. R.; Gerhard, A. C.; Ritz, M. D.; Sacks, J. S.; Poutsma, J. C.; Pike, R. D.; Wojtas, L.; Bebout, D. C. ACS Omega 2017, 2, 6391. https://doi.org/10.1021/acsomega.7b01087
  12. Wang, H.; Zhang, D.; Ni, Z.-H.; Li, X.; Tian, L.; Jiang, J. Inorg. Chem. 2009, 48, 5946. https://doi.org/10.1021/ic9002862
  13. Wang, Y.; Bredenkotter, B.; Rieger, B.; Volkmer, D. Dalton Trans. 2007, 689. https://doi.org/10.1039/B609733B
  14. Hakimi, M.; Mardani, Z.; Moeini, K.; Mohr, F.; Fernandes, M. A. Polyhedron 2014, 67, 27. https://doi.org/10.1016/j.poly.2013.08.065
  15. Hakimi, M.; Mardani, Z.; Moeini, K.; Fernandes, M. A. J. Coord. Chem. 2012, 65, 2221. https://doi.org/10.1080/00958972.2012.690145
  16. Marandi, F.; Amoopour, F.; Pantenburg, I.; Meyer, G. J. Mol. Struct. 2010, 973, 124. https://doi.org/10.1016/j.molstruc.2010.03.056
  17. Marandi, F.; Moeini, K.; Alizadeh, F.; Mardani, Z.; Quah, C. K.; Loh, W.-S.; Woollins, J. D. Inorg. Chim. Acta 2018, 482, 717. https://doi.org/10.1016/j.ica.2018.07.014
  18. Marandi, F.; Moeini, K.; Arkak, A.; Mardani, Z.; Krautscheid, H. J. Coord. Chem. 2018, Accepted.
  19. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339. https://doi.org/10.1107/S0021889808042726
  20. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565. https://doi.org/10.1107/S0021889897003117
  21. Burnett, M. N.; Johnson, C. K., Ortep-III, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.: 1996.
  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
  23. Perdew, J. P. Phys. Rev. B 1986, 33, 8822. https://doi.org/10.1103/PhysRevB.33.8822
  24. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  25. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. https://doi.org/10.1063/1.1674902
  26. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. https://doi.org/10.1063/1.448799
  27. Nakamoto, K. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6 ed.; John Wiley & Sons, Inc, Hoboken: 2009; p 324.
  28. Vittal, J. J.; Dean, P. A. W. Polyhedron 1998, 17, 1937. https://doi.org/10.1016/S0277-5387(97)00530-5