Figure 1. The schematic representation and molecular orbitals (HOMO, LUMO) of 2CzTPN derivatives (C56H32N6) at the B3LYP/6-31G** level of theory.
Figure 2. The schematic representation and molecular orbitals (HOMO, LUMO) of para-A, B and meta-A, B (C36H24N2S1O2) at the B3LYP/6-31G** level of theory.
Figure 3. The schematic representation and molecular orbitals (HOMO, LUMO) of CzBN derivatives (I-VI) at the B3LYP/cc-pVTZlevel of theory.
Table 1. HOMO, LUMO, HOMO-LUMO gap(eV) and predicted electronic spectra of C56H32N6 and C36H24N2S1O2 at the B3LYP and TDB3LYP methods with 6-31G** basis set.
Table 2. HOMO, LUMO, HOMO-LUMO gap(ΔEg, eV) and predicted electronic spectra of C19H12N2 ~ C31H20N2(I-VI) at the B3LYP and TD-B3LYP methods with cc-pVTZ basis set.
Table 3. The energy difference between the first excited singlet and triplet state(ΔEST) of C56H32N6 and C36H24N2S1O2 at the TD-B3LYP/ 6-31G** level of theory.
Table 4. The energy difference between the first excited singlet and triplet state(ΔEST) of C19H12N2 ~ C31H20N2 (I-VI) at the TD-B3LYP/ cc-pVTZ level of theory.
References
- Chitpakdee, C.; Namuangruk, S.; Khongpracha, P.; Jungsuttiwong, S.; Tarsang, R.; Sudyoadsuk, T.; Promarak, V. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 125, 36. https://doi.org/10.1016/j.saa.2013.12.111
- Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson M. E.; Forrest. S. R. Nature 1998, 395, 151. https://doi.org/10.1038/25954
- Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931. https://doi.org/10.1002/adma.201402532
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. https://doi.org/10.1038/nature11687
- Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nature Reviews Meterials 2018, 3(4), 18020. https://doi.org/10.1038/natrevmats.2018.20
- Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. https://doi.org/10.1063/1.1733929
- Helfrich, W.; Schneider, W. Phys. Rev. Lett. 1965, 14, 229. https://doi.org/10.1103/PhysRevLett.14.229
- Tang, C. W.; VanSlyke. S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
- Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302. https://doi.org/10.1063/1.3558906
- Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. Appl. Phys. Lett. 2012, 101, 093306. https://doi.org/10.1063/1.4749285
- Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.; Adachi, C. Mater. Horiz. 2014, 1, 264. https://doi.org/10.1039/C3MH00079F
- Huang, B.; Qi, Q.; Jiang, W.; Tang, J.; Liu, Y.; Fan, W.; Yin, Z.; Shi, F.; Ban, X.; Xu, H.; Sun, Y. Dyes Pigm. 2014, 111, 135. https://doi.org/10.1016/j.dyepig.2014.06.008
- Gaj, M. P.; Fuentes-Hernandez, C.; Zhang, Y.; Marder, S. R.; Kippelen, B. Org. Electron. 2015, 16, 109. https://doi.org/10.1016/j.orgel.2014.10.049
- Ryoo, C. H.; Cho, I.; Han, J.; Yang, J.; Kwon, J. E.; Kim, S.; Jeong, H.; Lee, C.; Park, S. Y. ACS Appl. Mater. Interfaces 2017, 9, 41413. https://doi.org/10.1021/acsami.7b13158
- Aydemir, M.; Xu, S.; Chen, C.; Bryce, M. R.; Chi, Z.; P. Monkman, A. P. J. Phys. Chem. C 2017, 121, 17764. https://doi.org/10.1021/acs.jpcc.7b06299
- Matulaitis, T.; Imbrasas, P.; Kukhta, N. A.; Baronas, P.; Buciunas, T.; Banevicius, D.; Kazlauskas, K.; Grazulevicius, J. V.; Jursenas, S. J. Phys. Chem. C 2017, 121, 23618. https://doi.org/10.1021/acs.jpcc.7b08034
- Milian-Medina, B.; Gierschner, J. Org. Electron. 2012, 13, 985. https://doi.org/10.1016/j.orgel.2012.02.010
- Valchanov, G.; Ivanova, A.; Tadjer, A.; Chercka, D.; Baumgarten, M. Org. Electron. 2013, 14, 2727. https://doi.org/10.1016/j.orgel.2013.07.023
- Li, Q.; Xu, S.-X.; Wang, J.-L.; Xia, H.-Y.; Zhao, F.; Wang, Y.-B. Int. J. Quantum Chem. 2014, 114, 1685. https://doi.org/10.1002/qua.24746
- Valchanov, G.; Ivanova, A.; Tadjer, A.; Chercka, D.; Baumgarten, M. J. Phys. Chem. A 2016, 120, 6944. https://doi.org/10.1021/acs.jpca.6b06680
- Tu, C.; Liang, W. ACS Omega 2017, 2, 3098. https://doi.org/10.1021/acsomega.7b00514
- Samanta, P. K.; Kim, D.; Coropceanu, V.; Bredas, J.-L. J. Am. Chem. Soc. 2017, 139, 4042. https://doi.org/10.1021/jacs.6b12124
- Runge, E.; Gros, E. K. U. Phys. Rev. Lett. 1984, 52, 997. https://doi.org/10.1103/PhysRevLett.52.997
- (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
- Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 720. https://doi.org/10.1063/1.1674901
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.