Acknowledgement
Supported by : National Natural Science Foundation of China
References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- B. Belaid, E. Elhoucien, and T. M. Rassias, On the generalized Hyers-Ulam stability of Swiatak's functional equation, J. Math. Inequal. 1 (2007), no. 2, 291-300.
- B. Belaid, E. Elhoucien, and T. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007), no. 2, 247-262.
- N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012 (2012), Art. ID 716936, 41 pp.
- J. K. Chung, B. R. Ebanks, C. T. Ng, and P. K. Sahoo, On a quadratic-trigonometric functional equation and some applications, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1131-1161. https://doi.org/10.1090/S0002-9947-1995-1290715-0
- J. K. Chung, B. R. Ebanks, and P. K. Sahoo, On a functional equation of Swiatak on groups, Aequationes Math. 45 (1993), no. 2-3, 246-266. https://doi.org/10.1007/BF01855883
- G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190. https://doi.org/10.1007/BF01831117
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhauser Boston, Inc., Boston, MA, 1998.
- D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. https://doi.org/10.1007/BF01830975
- D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828. https://doi.org/10.1090/S0002-9939-1952-0049962-5
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011.
- S.-M. Jung, D. Popa, and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim. 59 (2014), no. 1, 165-171. https://doi.org/10.1007/s10898-013-0083-9
- J. R. Lee, C. Park, and D. Y. Shin, An AQCQ-functional equation in matrix normed spaces, Results Math. 64 (2013), no. 3-4, 305-318. https://doi.org/10.1007/s00025-013-0315-9
- D. Popa and I. Rasa, On the best constant in Hyers-Ulam stability of some positive linear operators, J. Math. Anal. Appl. 412 (2014), no. 1, 103-108. https://doi.org/10.1016/j.jmaa.2013.10.039
- T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- P. K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, FL, 2011.
- P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000), no. 3, 255-261. https://doi.org/10.1007/s000100050125
-
H. Swiatak, On two functional equations connected with the equation
${\phi}(x+y)+{\phi}(x-y)=2{\phi}(x)+2{\phi}(y)$ , Aequationes Math. 5 (1970), 3-9. https://doi.org/10.1007/BF01819265 - S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.