과제정보
연구 과제 주관 기관 : China National Natural Science Foundation, Natural Science Foundation of Guangdong Province
참고문헌
- Blasco and M. Pavlovic, Coefficient multipliers on Banach spaces of analytic functions, Rev. Mat. Iberoam. 27 (2011), no. 2, 415-447. https://doi.org/10.4171/RMI/642
- S. M. Buckley, P. Koskela, and D. Vukotic, Fractional integration, differentiation, and weighted Bergman spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 2, 369-385. https://doi.org/10.1017/S030500419800334X
- S. M. Buckley, M. S. Ramanujan, and D. Vukotic, Bounded and compact multipliers between Bergman and Hardy spaces, Integral Equations Operator Theory 35 (1999), no. 1, 1-19. https://doi.org/10.1007/BF01225524
-
P. L. Duren, Theory of
$H^p$ Spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970. - T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. https://doi.org/10.1016/0022-247X(72)90081-9
- G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math., Oxford Ser. 12 (1941), 221-256.
- M. Jevtic and I. Jovanovic, Coefficient multipliers of mixed norm spaces, Canad. Math. Bull. 36 (1993), no. 3, 283-285. https://doi.org/10.4153/CMB-1993-040-2
- M. Jevtic, D. Vukotic, and M. Arsenovic, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces, RSME Springer Series, 2, Springer, Cham, 2016.
- J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (II), Proc. London Math. Soc. (2) 42 (1936), no. 1, 52-89.
-
Z. Lou, Coefficient multipliers of Bergman spaces
$A^p$ . II, Canad. Math. Bull. 40 (1997), no. 4, 475-487. https://doi.org/10.4153/CMB-1997-057-1 -
M. Mateljevic and M. Pavlovic,
$L^p$ -behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), no. 2, 309-316. https://doi.org/10.2307/2043708 -
M. Mateljevic and M. Pavlovic, Multipliers of
$H^p$ and BMOA, Pacific J. Math. 146 (1990), no. 1, 71-84. https://doi.org/10.2140/pjm.1990.146.71 - M. Pavlovic, Introduction to Function Spaces on the Disk, Posebna Izdanja, 20, Matematicki Institut SANU, Belgrade, 2004.
- P. Wojtaszczyk, On multipliers into Bergman spaces and Nevanlinna class, Canad. Math. Bull. 33 (1990), no. 2, 151-161. https://doi.org/10.4153/CMB-1990-026-7
- X. Yue, Coefficient multipliers on weighted Bergman spaces, Complex Var. Elliptic Equ. 40 (1999), no. 2, 163-172. https://doi.org/10.1080/17476939908815216
-
R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of
$\mathbb{C}^n$ , Mem. Soc. Math. Fr. (N.S.) No. 115 (2008), vi+103 pp. (2009). - K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), no. 2, 260-278. https://doi.org/10.1016/0022-1236(88)90100-0