Table 1. Comparison table
참고문헌
- S. Amat, S. Busquier, and J. M. Gutierrez, Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math. 157 (2003), no. 1, 197-205. https://doi.org/10.1016/S0377-0427(03)00420-5
- I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
- I. K. Argyros, Computational Theory of Iterative Methods, Elsevier Publ. Co. New York, USA, 2007.
- I. K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comp. 80 (2011), no. 273, 327-343. https://doi.org/10.1090/S0025-5718-2010-02398-1
- I. K. Argyros, Y. J. Cho, and S. George, On the "terra incognita" for the Newton-Kantrovich method with applications, J. Korean Math. Soc. 51 (2014), no. 2, 251-266. https://doi.org/10.4134/JKMS.2014.51.2.251
- I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical methods for equations and its applications, CRC Press, Boca Raton, FL, 2012.
- I. K. Argyros, Y. J. Cho, and H. Ren, Convergence of Halley's method for operators with the bounded second Frechet-derivative in Banach spaces, J. Inequal. Appl. 2013 (2013), 260, 12 pp. https://doi.org/10.1186/1029-242X-2013-12
- I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), no. 3, 364-387. https://doi.org/10.1016/j.jco.2011.12.003
- I. K. Argyros and S. Hilout, Computational Methods in Nonlinear Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
- R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput. 265 (2015), 520-532. https://doi.org/10.1016/j.amc.2015.05.004
- V. Candela and A. Marquina, Recurrence relations for rational cubic methods: I. The Halley method, Computing 44 (1990), no. 2, 169-184. https://doi.org/10.1007/BF02241866
- V. Candela and A. Marquina, Recurrence relations for rational cubic methods. II. The Chebyshev method, Computing 45 (1990), no. 4, 355-367. https://doi.org/10.1007/BF02238803
- C. Chun, P. Stanica, and B. Neta, Third-order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011), no. 6, 1665-1675. https://doi.org/10.1016/j.camwa.2011.01.034
- J. M. Gutierrez and M. A. Hernandez, Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math. 82 (1997), no. 1-2, 171-183. https://doi.org/10.1016/S0377-0427(97)00076-9
- J. M. Gutierrez and M. A. Hernandez, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998), no. 7, 1-8.
- M. A. Hernandez, Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41 (2001), 433-455. https://doi.org/10.1016/S0898-1221(00)00286-8
- M. A. Hernandez and M. A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math. 126 (2000), no. 1-2, 131-143. https://doi.org/10.1016/S0377-0427(99)00347-7
- L. V. Kantorovich and G. P. Akilov, Functional Analysis, translated from the Russian by Howard L. Silcock, second edition, Pergamon Press, Oxford, 1982.
- A. Magrenan, Different anomalies in a Jarratt family of iterative root-finding methods, Appl. Math. Comput. 233 (2014), 29-38. https://doi.org/10.1016/j.amc.2014.01.037
- A. Magrenan, A new tool to study real dynamics: the convergence plane, Appl. Math. Comput. 248 (2014), 215-224. https://doi.org/10.1016/j.amc.2014.09.061
- A. Magrenan and I. K. Argyros, A contemporary study of iterative methods, Academic Press, London, 2018.
- J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
- P. K. Parida and D. K. Gupta, Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl. 345 (2008), no. 1, 350-361. https://doi.org/10.1016/j.jmaa.2008.03.064
- M. S. Petkovic, B. Neta, L. Petkovic, and J. Dzunic, Multipoint Methods for Solving Nonlinear Equations, Elsevier/Academic Press, Amsterdam, 2013.
- F. A. Potra, On an iterative algorithm of order 1.839...for solving nonlinear operator equations, Numer. Funct. Anal. Optim. 7 (1984/85), no. 1, 75-106. https://doi.org/10.1080/01630568508816182
- J. R. Sharma and H. Arora, Efficient Jarratt-like methods for solving systems of non-linear equations, Calcolo 51 (2014), no. 1, 193-210. https://doi.org/10.1007/s10092-013-0097-1