DOI QR코드

DOI QR Code

IMPROVED LOCAL CONVERGENCE ANALYSIS FOR A THREE POINT METHOD OF CONVERGENCE ORDER 1.839

  • Argyros, Ioannis K. (Department of Mathematical Sciences Cameron University) ;
  • Cho, Yeol Je (Department of Mathematics Education Gyeongsang National University) ;
  • George, Santhosh (Department of Mathematical and Computational Sciences National Institute of Technology Karnataka)
  • 투고 : 2018.05.02
  • 심사 : 2019.03.08
  • 발행 : 2019.05.31

초록

In this paper, we present a local convergence analysis of a three point method with convergence order $1.839{\ldots}$ for approximating a locally unique solution of a nonlinear operator equation in setting of Banach spaces. Using weaker hypotheses than in earlier studies, we obtain: larger radius of convergence and more precise error estimates on the distances involved. Finally, numerical examples are used to show the advantages of the main results over earlier results.

키워드

Table 1. Comparison table

E1BMAX_2019_v56n3_621_t0001.png 이미지

참고문헌

  1. S. Amat, S. Busquier, and J. M. Gutierrez, Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math. 157 (2003), no. 1, 197-205. https://doi.org/10.1016/S0377-0427(03)00420-5
  2. I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
  3. I. K. Argyros, Computational Theory of Iterative Methods, Elsevier Publ. Co. New York, USA, 2007.
  4. I. K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comp. 80 (2011), no. 273, 327-343. https://doi.org/10.1090/S0025-5718-2010-02398-1
  5. I. K. Argyros, Y. J. Cho, and S. George, On the "terra incognita" for the Newton-Kantrovich method with applications, J. Korean Math. Soc. 51 (2014), no. 2, 251-266. https://doi.org/10.4134/JKMS.2014.51.2.251
  6. I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical methods for equations and its applications, CRC Press, Boca Raton, FL, 2012.
  7. I. K. Argyros, Y. J. Cho, and H. Ren, Convergence of Halley's method for operators with the bounded second Frechet-derivative in Banach spaces, J. Inequal. Appl. 2013 (2013), 260, 12 pp. https://doi.org/10.1186/1029-242X-2013-12
  8. I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), no. 3, 364-387. https://doi.org/10.1016/j.jco.2011.12.003
  9. I. K. Argyros and S. Hilout, Computational Methods in Nonlinear Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
  10. R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput. 265 (2015), 520-532. https://doi.org/10.1016/j.amc.2015.05.004
  11. V. Candela and A. Marquina, Recurrence relations for rational cubic methods: I. The Halley method, Computing 44 (1990), no. 2, 169-184. https://doi.org/10.1007/BF02241866
  12. V. Candela and A. Marquina, Recurrence relations for rational cubic methods. II. The Chebyshev method, Computing 45 (1990), no. 4, 355-367. https://doi.org/10.1007/BF02238803
  13. C. Chun, P. Stanica, and B. Neta, Third-order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011), no. 6, 1665-1675. https://doi.org/10.1016/j.camwa.2011.01.034
  14. J. M. Gutierrez and M. A. Hernandez, Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math. 82 (1997), no. 1-2, 171-183. https://doi.org/10.1016/S0377-0427(97)00076-9
  15. J. M. Gutierrez and M. A. Hernandez, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998), no. 7, 1-8.
  16. M. A. Hernandez, Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41 (2001), 433-455. https://doi.org/10.1016/S0898-1221(00)00286-8
  17. M. A. Hernandez and M. A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math. 126 (2000), no. 1-2, 131-143. https://doi.org/10.1016/S0377-0427(99)00347-7
  18. L. V. Kantorovich and G. P. Akilov, Functional Analysis, translated from the Russian by Howard L. Silcock, second edition, Pergamon Press, Oxford, 1982.
  19. A. Magrenan, Different anomalies in a Jarratt family of iterative root-finding methods, Appl. Math. Comput. 233 (2014), 29-38. https://doi.org/10.1016/j.amc.2014.01.037
  20. A. Magrenan, A new tool to study real dynamics: the convergence plane, Appl. Math. Comput. 248 (2014), 215-224. https://doi.org/10.1016/j.amc.2014.09.061
  21. A. Magrenan and I. K. Argyros, A contemporary study of iterative methods, Academic Press, London, 2018.
  22. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
  23. P. K. Parida and D. K. Gupta, Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl. 345 (2008), no. 1, 350-361. https://doi.org/10.1016/j.jmaa.2008.03.064
  24. M. S. Petkovic, B. Neta, L. Petkovic, and J. Dzunic, Multipoint Methods for Solving Nonlinear Equations, Elsevier/Academic Press, Amsterdam, 2013.
  25. F. A. Potra, On an iterative algorithm of order 1.839...for solving nonlinear operator equations, Numer. Funct. Anal. Optim. 7 (1984/85), no. 1, 75-106. https://doi.org/10.1080/01630568508816182
  26. J. R. Sharma and H. Arora, Efficient Jarratt-like methods for solving systems of non-linear equations, Calcolo 51 (2014), no. 1, 193-210. https://doi.org/10.1007/s10092-013-0097-1