DOI QR코드

DOI QR Code

Production of Cyanocarboxylic Acid by Acidovorax facilis 72W Nitrilase Displayed on the Spore Surface of Bacillus subtilis

  • Zhong, Xia (College of Life Science and Technology, Jinan University) ;
  • Yang, Shaomin (Department of Pain Medicine, Shenzhen Municipal Sixth People's Hospital) ;
  • Su, Xinying (College of Life Science and Technology, Jinan University) ;
  • Shen, Xiaoxia (College of Life Science and Technology, Jinan University) ;
  • Zhao, Wen (College of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology) ;
  • Chan, Zhi (College of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology)
  • Received : 2019.01.16
  • Accepted : 2019.03.19
  • Published : 2019.05.28

Abstract

Nitrilase is a valuable hydrolase that catalyzes nitriles into carboxylic acid and ammonia. Its applications, however, are severely restricted by the harsh conditions of industrial reaction processes. To solve this problem, a nitrilase from Acidovorax facilis 72W was inserted into an Escherichia coli-Bacillus subtilis shuttle vector for spore surface display. Western blot, enzyme activity measurements and flow cytometric analysis results all indicated a successful spore surface display of the CotB-nit fusion protein. In addition, the optimal catalytic pH value and temperature of the displayed nitrilase were determined to be 7.0 and $50^{\circ}C$, respectively. Moreover, results of reusability tests revealed that 64% of the initial activity of the displayed nitrilase was still retained at the $10^{th}$ cycle. Furthermore, hydrolysis efficiency of upscale production of cyanocarboxylic acid was significantly higher in the displayed nitrilase-treated group than in the free group expressed by E. coli (pET-28a-nit). Generally, the display of A. facilis 72W nitrilase on the spore surface of Bacillus subtilis may be a useful method for immobilization of enzyme and consequent biocatalytic stabilization.

Keywords

References

  1. Koeller KM, Wong CH. 2001. Enzymes for chemical synthesis. Nature 409: 232-240. https://doi.org/10.1038/35051706
  2. Ran N, Zhao L, Chen Z, Tao J. 2008. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem. 10: 361-372. https://doi.org/10.1039/B716045C
  3. Schulze B, Wubbolts MG. 1999. Biocatalysis for industrial production of fine chemicals. Curr. Opin. Biotechnol. 10: 609-615. https://doi.org/10.1016/S0958-1669(99)00042-7
  4. Zheng GW, Xu JH. 2011. New opportunities for biocatalysis:driving the synthesis of chiral chemicals. Curr. Opin. Biotechnol. 22: 784-792. https://doi.org/10.1016/j.copbio.2011.07.002
  5. Reetz MT. 2013. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135: 12480-12496. https://doi.org/10.1021/ja405051f
  6. M.Thomas S, DiCosimo R, Nagarajan V. 2002. Biocatalysis:applications and potentials for the chemical industry. Trends Biotechnol. 20: 238-242. https://doi.org/10.1016/S0167-7799(02)01935-2
  7. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH. 2012. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb. Cell Fact. 11: 142. https://doi.org/10.1186/1475-2859-11-142
  8. Yamamoto K, Fujimatsu I, Komatsu K-I. 1992. Purification and Characterization of the Nitrilase from Alcaligenes faecalis ATCC 8750 Responsible for Enantioselective Hydrolysis of Mandelonitrile. J. Biosci. Bioeng. 73: 425-430.
  9. Layh N, Parratt J, Willetts A. 1998. Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J. Mol. Catal. BEnzym. 5: 467-474. https://doi.org/10.1016/S1381-1177(98)00075-7
  10. Kobayashi M, Yanaka N, Nagasawa T, Yamada H. 1990. Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J. Bacteriol. 172: 4807-4815. https://doi.org/10.1128/jb.172.9.4807-4815.1990
  11. Hann EC, Sigmund AE, Hennessey SM, Gavagan JE, Short DR, Ben-Bassat A, et al. 2002. Optimization of an immobilizedcell biocatalyst for production of 4-cyanopentanoic acid. Org. Process Res. Dev. 6: 492-496. https://doi.org/10.1021/op025515k
  12. Cooling FB, Gavagan JE, Fager SK, Hann EC, Wagner LW, Fallon RD, et al. 2001. Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J. Mol. Catal. B-Enzym. 11: 295-306. https://doi.org/10.1016/S1381-1177(00)00150-8
  13. Gavagan JE, Fager SK, Fallon RD, Folsom PW, Herkes FE, Eisenberg A, et al. 1998. Chemoenzymic production of lactams from aliphatic r,${\omega}$-dinitriles. J. Org. Chem. 63: 4792-4801. https://doi.org/10.1021/jo9804386
  14. Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnakova B, Stepankova B, et al. 2009. Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl. Microbiol. Biotechnol. 85: 277-284. https://doi.org/10.1007/s00253-009-2073-x
  15. Rey P, Rossi J-C, Taillades J, Gros G, Nore O. 2004. Hydrolysis of nitriles using an immobilized nitrilase:applications to the synthesis of methionine hydroxy analogue derivatives. J. Agr. Food Chem. 52: 8155-8162. https://doi.org/10.1021/jf048827q
  16. Ning D, Leng X, Li Q, Xu W. 2011. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. J. Appl. Microbiol. 111: 1327-1336. https://doi.org/10.1111/j.1365-2672.2011.05156.x
  17. Knecht LD, Pasini P, Daunert S. 2011. Bacterial spores as platforms for bioanalytical and biomedical applications. Anal. Bioanal. Chem. 400: 977-989. https://doi.org/10.1007/s00216-011-4835-4
  18. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszynska-Sularz G, et al. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact. 9: 2. https://doi.org/10.1186/1475-2859-9-2
  19. Chen HY, Zhang TX, Sun TY, Ni Z, Le YL, Tian R, et al. 2015. Clostridium thermocellum nitrilase expression and surface display on Bacillus subtilis spores. J. Mol. Microbiol. Biotechnol. 25: 381-387. https://doi.org/10.1159/000441642
  20. Tavassoli S, Hinc K, Iwanicki A, Obuchowski M, Ahmadian G. 2013. Investigation of spore coat display of Bacillus subtilis beta-galactosidase for developing of whole cell biocatalyst. Arch. Microbiol. 195: 197-202. https://doi.org/10.1007/s00203-013-0867-9
  21. Mingmongkolchai S, Panbangred W. 2018. Display of Escherichia coli phytase on the surface of Bacillus subtilis spore using CotG as an anchor protein. Appl. Biochem. Biotechnol. 187(3): 838-855. https://doi.org/10.1007/s12010-018-2855-7
  22. Mattossovich R, Iacono R, Cangiano G, Cobucci-Ponzano B, Isticato R, Moracci M, et al. 2017. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes. Microb. Cell Fact. 16: 218. https://doi.org/10.1186/s12934-017-0833-3
  23. Kim J. 2017. Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnol. Bioprocess Eng. 22: 462-468. https://doi.org/10.1007/s12257-017-0205-1
  24. Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, et al. 2016. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J. Mol. Catal. B-Enzym. 123: 73-80. https://doi.org/10.1016/j.molcatb.2015.11.002
  25. Chen H, Tian R, Ni Z, Zhang Q, Zhang T, Chen Z, et al. 2015. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 19: 799-808. https://doi.org/10.1007/s00792-015-0755-0
  26. Qu Y, Wang J, Zhang Z, Shi S, Li D, Shen W, et al. 2014. Catalytic transformation of HODAs using an efficient metacleavage product hydrolase-spore surface display system. J. Mol. Catal. B-Enzym. 102: 204-210. https://doi.org/10.1016/j.molcatb.2014.02.014
  27. Lian C, Zhou Y, Feng F, Chen L, Tang Q, Yao Q, et al. 2014. Surface display of human growth hormone on Bacillus subtilis spores for oral administration. Curr. Microbiol. 68:463-471. https://doi.org/10.1007/s00284-013-0500-9
  28. Iwanicki A, Piatek I, Stasilojc M, Grela A, Lega T, Obuchowski M, et al. 2014. A system of vectors for Bacillus subtilis spore surface display. Microb. Cell Fact. 13: 30-38. https://doi.org/10.1186/1475-2859-13-30
  29. Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi KA, Ricca E, et al. 2010. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res. Microbiol. 161: 757-764. https://doi.org/10.1016/j.resmic.2010.07.008
  30. Hinc K, Iwanicki A, Obuchowski M. 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb. Cell Fact. 12: 22. https://doi.org/10.1186/1475-2859-12-22
  31. Hwang BY, Kim BG, Kim JH. 2011. Bacterial surface display of a co-factor containing enzyme, omega-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862-1865. https://doi.org/10.1271/bbb.110307
  32. Chen HY, Chen Z, Wu BG, Ullah J, Zhang TX, Jia JR, et al. 2017. Influences of various peptide linkers on the thermotoga maritima MSB8 nitrilase displayed on the spore surface of Bacillus subtilis. J. Mol.Microbiol. Biotechnol. 27: 64-71. https://doi.org/10.1159/000454813
  33. Zhang Z-J, Yu H-L, Imanaka T, Xu J-H. 2015. Efficient production of (R)-(-)-mandelic acid by isopropanolpermeabilized recombinant E. coli cells expressing Alcaligenes sp. nitrilase. Biochem. Eng J. 95: 71-77. https://doi.org/10.1016/j.bej.2014.12.009
  34. Yao P, Li J, Yuan J, Han C, Liu X, Feng J, et al. 2015. Enzymatic synthesis of a key intermediate for rosuvastatin by nitrilase-catalyzed hydrolysis of ethyl (R)-4-cyano-3-hydroxybutyate at high substrate concentration. ChemCatChem. 7: 271-275. https://doi.org/10.1002/cctc.201402877
  35. Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG. 2010. Developments in nitrile and amide biotransformation processes. Trends Biotechnol. 28: 561-569. https://doi.org/10.1016/j.tibtech.2010.08.004
  36. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Tech. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  37. Kabaivanova L, Dobreva E, Dimitrov P, Emanuilova E. 2005. Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J. Ind. Microbiol. Biotechnol. 32:7-11. https://doi.org/10.1007/s10295-004-0189-7
  38. Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294-6301. https://doi.org/10.1128/JB.183.21.6294-6301.2001
  39. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  40. Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. 2017. Display of B-pumilus chitinase on the surface of B-subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol. 140: 17-23. https://doi.org/10.1016/j.pestbp.2017.05.008
  41. AG, ZB. 1989. Induction, purification, and characterization of the nitrilase of Fusarium oxy sporum f sp. melonis. Biotechnol. Appl. Biochem. 11: 581-601.
  42. Layh N, Willetts A. 1998. Enzymatic nitrile hydrolysis in low water systems. Biotechnol. Lett. 20: 329-331. https://doi.org/10.1023/A:1005358809561
  43. Gong JS, Shi JS, Lu ZM, Li H, Zhou ZM, Xu ZH. 2017. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit. Rev. Biotechnol. 37: 69-81. https://doi.org/10.3109/07388551.2015.1120704

Cited by

  1. Nitrilase: a promising biocatalyst in industrial applications for green chemistry vol.41, pp.1, 2021, https://doi.org/10.1080/07388551.2020.1827367