DOI QR코드

DOI QR Code

Characterization and Genomic Analysis of Novel Bacteriophage ΦCS01 Targeting Cronobacter sakazakii

  • Kim, Gyeong-Hwuii (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Jaegon (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Ki-Hwan (Department of Biological Science and Technology, Yonsei University) ;
  • Lee, Jin-Sun (Department of Biological Science and Technology, Yonsei University) ;
  • Lee, Na-Gyeong (Department of Biological Science and Technology, Yonsei University) ;
  • Lim, Tae-Hyun (Department of Biological Science and Technology, Yonsei University) ;
  • Yoon, Sung-Sik (Department of Biological Science and Technology, Yonsei University)
  • Received : 2018.12.26
  • Accepted : 2019.04.09
  • Published : 2019.05.28

Abstract

Cronobacter sakazakii is an opportunistic pathogen causing serious infections in neonates. In this study, a bacteriophage ${\Phi}CS01$, which infects C. sakazakii, was isolated from swine feces and its morphology, growth parameters, and genomic analysis were investigated. Transmission electron microscopy revealed that ${\Phi}CS01$ has a spherical head and is 65.74 nm in diameter with a 98.75 nm contracted tail, suggesting that it belongs to the family Myoviridae. The major viral proteins are approximately 71 kDa and 64 kDa in size. The latent period of ${\Phi}CS01$ was shown to be 60 min, and the burst size was 90.7 pfu (plaque-forming units)/infected cell. Bacteriophage ${\Phi}CS01$ was stable at $4-60^{\circ}C$ for 1 h and lost infectivity after 1 h of heating at $70^{\circ}C$. Infectivity remained unaffected at pH 4-9 for 2 h, while the bacteriophage was inactivated at pH <3 or >10. The double-stranded ${\Phi}CS01$ DNA genome consists of 48,195 base pairs, with 75 predicted open reading frames. Phylogenetic analysis is closely related to that of the previously reported C. sakazakii phage ESP2949-1. The newly isolated ${\Phi}CS01$ shows infectivity in the host bacterium C. sakazakii, indicating that it may be a promising alternative to antibacterial agents for the removal of C. sakazakii from powdered infant formulas.

Keywords

References

  1. Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. 2012. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J. Appl. Microbiol. 113: 1-15. https://doi.org/10.1111/j.1365-2672.2012.05281.x
  2. Mofokeng L, Cawthorn DM, Witthuhn RC, Anelich LECM, Jooste PJ. 2011. Characterization of Cronobacter species (Enterobacter Sakazakii) isolated from various South African food sources. J. Food Safety 31: 98-107. https://doi.org/10.1111/j.1745-4565.2010.00272.x
  3. Osaili TM, Shaker RR, Ayyash MM, Al-Nabulsi AA, Forsythe SJ. 2009. Survival and growth of Cronobacter species (Enterobacter sakazakii) in wheat-based infant followon formulas. Lett. Appl. Microbiol. 48: 408-412. https://doi.org/10.1111/j.1472-765X.2008.02541.x
  4. Greer GG. 2005. Bacteriophage control of foodborne bacteria. J. Food Protect. 68: 1102-1111. https://doi.org/10.4315/0362-028X-68.5.1102
  5. Cai XQ, Yu HQ, Ruan ZX, Y ang LL, B ai J S, Q iu DY. 2013. Rapid detection and simultaneous genotyping of Cronobacter spp. (formerly Enterobacter sakazakii) in powdered infant formula using real-time PCR and high resolution melting (HRM) analysis. PLos One 8: e67082. https://doi.org/10.1371/journal.pone.0067082
  6. Liu X, Fang JH, Zhang MZ, Wang XY, Wang WF, Gong YF. 2012. Development of a loop-mediated isothermal amplification assay for detection of Cronobacter spp. (Enterobacter sakazakii). World J. Microbiol. Biotechnol. 28: 1013-1020. https://doi.org/10.1007/s11274-011-0899-8
  7. Lou XQ, Si GJ, Yu H, Qi JJ, Liu T, Fang ZG. 2014. Possible reservoir and routes of transmission of Cronobacter (Enterobacter sakazakii) via wheat flour. Food Control. 43: 258-262. https://doi.org/10.1016/j.foodcont.2014.03.029
  8. Xu X, Wu Q, Zhang J, Ye Y, Yang X, Dong X. 2014. Occurrence and characterization of cronobacter spp. In powdered formula from chinese retail markets. Foodborne Pathog. Dis. 11: 307-312. https://doi.org/10.1089/fpd.2013.1657
  9. Kalatzis PG, Castillo D, Katharios P, Middelboe M. 2018. Bacteriophage interactions with marine pathogenic vibrios:implications for phage therapy. Antibiotics-Basel. 7(1) pii: E15.
  10. Kumari S, Harjai K, Chhibber S. 2010. Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J. Microbiol. Biotechnol. 20: 935-941. https://doi.org/10.4014/jmb.0909.09010
  11. Lee JH, Bai J, Shin H, Kim Y, Park B, Heu S, et al. 2016. A novel bacteriophage targeting cronobacter sakazakii is a potential biocontrol agent in foods. Appl. Environ. Microbiol. 82: 192-201. https://doi.org/10.1128/AEM.01827-15
  12. Lee, HJ, Kim WI, Kwon YC, Cha KE, Kim M, Myung H. 2016. A Newly Isolated Bacteriophage, PBES 02, Infecting Cronobacter sakazakii. J. Microbiol Biotechnol. 26: 1629-1635. https://doi.org/10.4014/jmb.1605.05020
  13. Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, Alanis VA, Abbasifar A, et al. 2012. Genome sequence of Cronobacter sakazakii myovirus vB_CsaM_GAP31. Am. Soc. Microbiol. 86: 13830-13831.
  14. Abbasifar RAM, Kropinski PM, Sabour HWA, Lingohr EJ, Griffiths MW. 2012. Complete genome sequence of Cronobacter sakazakii bacteriophage vB_CsaM_GAP161. J. Virol. 86: 13806-13807. https://doi.org/10.1128/JVI.02546-12
  15. Lee YD, Chang HI, Park JH. 2011. Complete genomic sequence of virulent Cronobacter sakazakii phage ESSI-2 isolated from swine feces. Arch. Virol. 156: 721-724. https://doi.org/10.1007/s00705-011-0934-y
  16. Lee YD, Park JH. 2012. Complete genome of temperate phage ENT39118 from Cronobacter sakazakii. J. Virol. 86:5400-5401. https://doi.org/10.1128/JVI.00345-12
  17. Kajsik M, Bugala J, Kadlicekova V, Szemes T, Turna J, Drahovska H. 2019. Characterization of Dev-CD-23823 and Dev-CT57, new Autographivirinae bacteriophages infecting Cronobacter spp. Arch. Virol. 1-9.
  18. Lee JH, Choi Y, Shin H, Lee J, Ryu S. 2012. Complete genome sequence of Cronobacter sakazakii temperate bacteriophage phiES15. J. Virol. 86: 7713-7714. https://doi.org/10.1128/JVI.01042-12
  19. Kazi M, Annapure US. 2016. Bacteriophage biocontrol of foodborne pathogens. J. Food Sci. Tech. Mys. 53: 1355-1362. https://doi.org/10.1007/s13197-015-1996-8
  20. Rodriguez L, Martinez B, Zhou Y, Rodriguez A, Donovan DM, Garcia P. 2011. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-philPLA88. BMC Microbiol. 11.
  21. Lee HJ, Kim WI, Kwon YC, Cha KE, Kim M, Myung H. 2016. A newly isolated bacteriophage, PBES 02, infecting Cronobacter sakazakii. J. Microbiol. Biotechnol. 26: 1629-1635. https://doi.org/10.4014/jmb.1605.05020
  22. Simoliunas E, Kaliniene L, Stasilo M, Truncaite L, Zajanckauskaite A, Staniulis J, et al. 2014. Isolation and characterization of vB_ArS-ArV2-First Arthrobacter sp. infecting bacteriophage with completely sequenced genome. PLos One 9.
  23. Alves DR, Gaudion A, Bean JE, Esteban PP, Arnot TC, Harper DR, et al. 2014. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl. Environ. Microbiol. 80: 6694-6703. https://doi.org/10.1128/AEM.01789-14
  24. Linderoth NA, Julien B, Flick KE, Calendar R, Christie GE. 1994. Molecular-cloning and characterization of bacteriophage-P2 gene-R and gene-S involved in tail completion. Virology 200: 347-359. https://doi.org/10.1006/viro.1994.1199
  25. Cao ZH, Zhang JC, Niu YD, Cui NZ, Ma YS, Cao F. 2015. Isolation and characterization of a "phiKMV-like" bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLos One 10.
  26. Jonczyk E, Klak M, Międzybrodzki R, Gorski A. 2011. The influence of external factors on bacteriophages. Folia Microbiol. 56: 191-200. https://doi.org/10.1007/s12223-011-0039-8
  27. Lee JH, Choi Y, Shin H, Lee J, Ryu S. 2012. Complete genome sequence of Cronobacter sakazakii temperate bacteriophage phiES15. J. Virol. 86: 7713-7714. https://doi.org/10.1128/JVI.01042-12
  28. Lee YD, Kim JY, Park JH, Chang H. 2012. Genomic analysis of bacteriophage ESP2949-1, which is virulent for Cronobacter sakazakii. Arch. Virol. 157: 199-202. https://doi.org/10.1007/s00705-011-1147-0

Cited by

  1. Genetic Analysis and Characterization of a Bacteriophage ØCJ19 Active against Enterotoxigenic Escherichia coli vol.40, pp.5, 2020, https://doi.org/10.5851/kosfa.2020.e49
  2. Novel phage vB_CtuP_B1 for controlling Cronobacter malonaticus and Cronobacter turicensis in ready-to-eat lettuce and powered infant formula vol.143, 2019, https://doi.org/10.1016/j.foodres.2021.110255
  3. Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process vol.31, pp.10, 2019, https://doi.org/10.4014/jmb.2107.07017
  4. Isolation and characteristics of new phage JK004 and application to control Cronobacter sakazakii on material surfaces and powdered infant formula vol.153, 2022, https://doi.org/10.1016/j.lwt.2021.112571