DOI QR코드

DOI QR Code

Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces

  • Lee, Namil (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Hwang, Soonkyu (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Lee, Yongjae (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Cho, Suhyung (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Palsson, Bernhard (Department of Bioengineering, University of California San Diego) ;
  • Cho, Byung-Kwan (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
  • Received : 2019.04.10
  • Accepted : 2019.05.11
  • Published : 2019.05.28

Abstract

Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.

Keywords

References

  1. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, et al. 2008. Genome sequence of the streptomycinproducing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060. https://doi.org/10.1128/JB.00204-08
  2. Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M, et al. 2011. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ. Microbiol. 13: 391-403. https://doi.org/10.1111/j.1462-2920.2010.02337.x
  3. Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. (Tokyo) 70: 865-870. https://doi.org/10.1038/ja.2017.51
  4. Lim FY, Sanchez JF, Wang CC, Keller NP. 2012. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol. 517: 303-324. https://doi.org/10.1016/B978-0-12-404634-4.00015-2
  5. Medema MH, Alam MT, Breitling R, Takano E. 2011. The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng. Bugs. 2: 230-233. https://doi.org/10.4161/bbug.2.4.16114
  6. Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. 2012. Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett. 586:2177-2183. https://doi.org/10.1016/j.febslet.2012.02.008
  7. Yang YH, Song E, Lee BR, Kim EJ, Park SH, Kim YG, et al. 2010. Rapid functional screening of Streptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC. Appl. Environ. Microbiol. 76:3645-3656. https://doi.org/10.1128/AEM.02617-09
  8. Myronovskyi M, Luzhetskyy A. 2016. Native and engineered promoters in natural product discovery. Nat. Prod. Rep. 33:1006-1019. https://doi.org/10.1039/C6NP00002A
  9. Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33:988-1005. https://doi.org/10.1039/C6NP00025H
  10. Harrison J, Studholme DJ. 2014. Recently published Streptomyces genome sequences. Microb. Biotechnol. 7: 373-380. https://doi.org/10.1111/1751-7915.12143
  11. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  12. Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. 2018. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci. Rep. 8: 6888. https://doi.org/10.1038/s41598-018-24921-y
  13. Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. 2008. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res. 36: 6882-6892. https://doi.org/10.1093/nar/gkn685
  14. Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH. 2009. Automated genome mining for natural products. BMC Bioinformatics 10: 185. https://doi.org/10.1186/1471-2105-10-185
  15. Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, et al. 2015. Genomes to natural products prediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res. 43: 9645-9662. https://doi.org/10.1093/nar/gkv1012
  16. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41. https://doi.org/10.1093/nar/gkx319
  17. Weber T, Kim HU. 2016. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth. Syst. Biotechnol. 1: 69-79. https://doi.org/10.1016/j.synbio.2015.12.002
  18. Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H, et al. 2018. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci. Rep. 8: 1594. https://doi.org/10.1038/s41598-018-20018-8
  19. Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. 2017. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci. Rep. 7: 44786. https://doi.org/10.1038/srep44786
  20. Zhang G, Yu D, Sang B, Feng J, Han L, Zhang X. 2017. Genome-wide analysis reveals the secondary metabolome in Streptomyces kanasensis ZX01. Genes (Basel) 8: 346. https://doi.org/10.3390/genes8120346
  21. Ansari MZ, Yadav G, Gokhale RS, Mohanty D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32: W405-413. https://doi.org/10.1093/nar/gkh359
  22. Kim MS, Cho WJ, Song MC, Park SW, Kim K, Kim E, et al. 2017. Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis. Microb. Cell Fact. 16: 9. https://doi.org/10.1186/s12934-017-0626-8
  23. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, et al. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531. https://doi.org/10.1038/nbt820
  24. Bode HB, Bethe B, Hofs R, Zeeck A. 2002. Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem. 3: 619-627. https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9
  25. Marmann A, Aly AH, Lin W, Wang B, Proksch P. 2014. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs. 12:1043-1065. https://doi.org/10.3390/md12021043
  26. Baral B, Akhgari A, Metsa-Ketela M. 2018. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol. 3: 163-178. https://doi.org/10.1016/j.synbio.2018.09.001
  27. King AA, Chater KF. 1986. The expression of the Escherichia coli lacZ gene in Streptomyces. J. Gen. Microbiol. 132: 1739-1752.
  28. Lussier FX, Denis F, Shareck F. 2010. Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl. Environ. Microbiol. 76: 967-970. https://doi.org/10.1128/AEM.02186-09
  29. Mitra A, Angamuthu K, Jayashree HV, Nagaraja V. 2009. Occurrence, divergence and evolution of intrinsic terminators across eubacteria. Genomics 94: 110-116. https://doi.org/10.1016/j.ygeno.2009.04.004
  30. Bibb MJ, White J, Ward JM, Janssen GR. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14: 533-545. https://doi.org/10.1111/j.1365-2958.1994.tb02187.x
  31. Bibb MJ, Janssen GR, Ward JM. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38: 215-226. https://doi.org/10.1016/0378-1119(85)90220-3
  32. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
  33. Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. 2013. An engineered strong promoter for Streptomycetes. Appl. Environ. Microbiol. 79: 4484-4492. https://doi.org/10.1128/AEM.00985-13
  34. Labes G, Bibb M, Wohlleben W. 1997. Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter. Microbiology 143: 1503-1512. https://doi.org/10.1099/00221287-143-5-1503
  35. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. 2013. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol. 2: 662-669. https://doi.org/10.1021/sb400058n
  36. Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. 2014. Synthetic promoter library for modulation of actinorhodin production in Streptomyces coelicolor A3(2). PLoS One 9: e99701. https://doi.org/10.1371/journal.pone.0099701
  37. Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ. 2011. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl. Microbiol. Biotechnol. 90: 615-623. https://doi.org/10.1007/s00253-010-3018-0
  38. Luo Y, Zhang L, Barton KW, Zhao H. 2015. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth. Biol. 4: 1001-1010. https://doi.org/10.1021/acssynbio.5b00016
  39. Li S, Wang J, Li X, Yin S, Wang W, Yang K. 2015. Genomewide identification and evaluation of constitutive promoters in Streptomycetes. Microb. Cell Fact. 14: 172. https://doi.org/10.1186/s12934-015-0351-0
  40. Murakami T, Holt TG, Thompson CJ. 1989. Thiostreptoninduced gene expression in Streptomyces lividans. J. Bacteriol. 171: 1459-1466. https://doi.org/10.1128/jb.171.3.1459-1466.1989
  41. Takano E, White J, Thompson CJ, Bibb MJ. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133-137. https://doi.org/10.1016/0378-1119(95)00545-2
  42. Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin (Shanghai) 47: 231-243. https://doi.org/10.1093/abbs/gmv007
  43. Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MC, Smith MC. 2005. Natural and synthetic tetracyclineinducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res. 33: e87. https://doi.org/10.1093/nar/gni086
  44. Horbal L, Fedorenko V, Luzhetskyy A. 2014. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl. Microbiol. Biotechnol. 98: 8641-8655. https://doi.org/10.1007/s00253-014-5918-x
  45. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, et al. 2004. Hyper-inducible expression system for Streptomycetes. Proc. Natl. Acad. Sci. USA 101: 14031-14035. https://doi.org/10.1073/pnas.0406058101
  46. Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H, et al. 2018. Development of a strictly regulated xylose-induced expression system in Streptomyces. Microb. Cell Fact. 17: 151. https://doi.org/10.1186/s12934-018-0991-y
  47. Hindle Z, Smith CP. 1994. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol. Microbiol. 12: 737-745. https://doi.org/10.1111/j.1365-2958.1994.tb01061.x
  48. Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ. 1986. Construction and characterisation of a series of multicopy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203: 468-478. https://doi.org/10.1007/BF00422072
  49. Pulido D, Jimenez A, Salas M, Mellado RP. 1987. A Bacillus subtilis phage phi 29 transcription terminator is efficiently recognized in Streptomyces lividans. Gene 56: 277-282. https://doi.org/10.1016/0378-1119(87)90144-2
  50. Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4: 723-728. https://doi.org/10.1021/sb500351f
  51. West S, Proudfoot NJ. 2009. Transcriptional termination enhances protein expression in human cells. Mol. Cell. 33:354-364. https://doi.org/10.1016/j.molcel.2009.01.008
  52. Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. 2010. Crosstalk between mRNA 3' end processing and transcription initiation. Mol. Cell. 40: 410-422. https://doi.org/10.1016/j.molcel.2010.10.012
  53. Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, et al. 2016. Term-seq reveals abundant riboregulation of antibiotics resistance in bacteria. Science 352:aad9822. https://doi.org/10.1126/science.aad9822
  54. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25: 117-124. https://doi.org/10.1038/nbt1270
  55. Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, et al. 2016. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat. Commun. 7: 11605. https://doi.org/10.1038/ncomms11605
  56. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60:512-538. https://doi.org/10.1128/MMBR.60.3.512-538.1996
  57. Na D, Lee D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26: 2633-2634. https://doi.org/10.1093/bioinformatics/btq458
  58. Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, et al. 2015. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. USA 112:12181-12186. https://doi.org/10.1073/pnas.1511027112
  59. Yi JS, Kim MW, Kim M, Jeong Y, Kim EJ, Cho BK, et al. 2017. A novel approach for gene expression optimization through native promoter and 5' UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor. ACS Synth. Biol. 6: 555-565. https://doi.org/10.1021/acssynbio.6b00263
  60. Janssen GR, Bibb MJ. 1990. Tandem promoters, tsrp1 and tsrp2, direct transcription of the thiostrepton resistance gene (tsr) of Streptomyces azureus: transcriptional initiation from tsrp2 occurs after deletion of the -35 region. Mol. Gen. Genet. 221: 339-346. https://doi.org/10.1007/BF00259397
  61. Sohaskey CD, Im H, Nelson AD, Schauer AT. 1992. Tn4556 and luciferase: synergistic tools for visualizing transcription in Streptomyces. Gene 115: 67-71. https://doi.org/10.1016/0378-1119(92)90542-W
  62. Ingram C, Brawner M, Youngman P, Westpheling J. 1989. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J. Bacteriol. 171: 6617-6624. https://doi.org/10.1128/jb.171.12.6617-6624.1989
  63. Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A. 2011. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl. Environ Microbiol. 77: 5370-5383. https://doi.org/10.1128/AEM.00434-11
  64. Flores FJ, Rincon J, Martin JF. 2003. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb. Cell Fact. 2: 5. https://doi.org/10.1186/1475-2859-2-5
  65. Willemse J, van Wezel GP. 2009. Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS One 4: e4242. https://doi.org/10.1371/journal.pone.0004242
  66. Santos-Beneit F, Errington J. 2017. Green fluorescent protein as a reporter for the spatial and temporal expression of actIII in Streptomyces coelicolor. Arch. Microbiol. 199: 875-880. https://doi.org/10.1007/s00203-017-1358-1
  67. Nguyen KD, Au-Young SH, Nodwell JR. 2007. Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 58: 167-173. https://doi.org/10.1016/j.plasmid.2007.03.005
  68. Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, et al. 2017. Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth. Biol. 6: 159-166. https://doi.org/10.1021/acssynbio.6b00202
  69. Siegl T, Luzhetskyy A. 2012. Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek. 102: 503-516. https://doi.org/10.1007/s10482-012-9795-y
  70. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, et al. 2012. Site-specific recombination strategies for engineering actinomycete genomes. Appl. Environ. Microbiol. 78: 1804-1812. https://doi.org/10.1128/AEM.06054-11
  71. Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, et al. 2006. Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res. 34: e20. https://doi.org/10.1093/nar/gnj019
  72. Zelyas N, Tahlan K, Jensen SE. 2009. Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces spp. Gene 443: 48-54. https://doi.org/10.1016/j.gene.2009.03.022
  73. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. https://doi.org/10.1126/science.1138140
  74. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823. https://doi.org/10.1126/science.1231143
  75. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41: 4336-4343. https://doi.org/10.1093/nar/gkt135
  76. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10: 741-743. https://doi.org/10.1038/nmeth.2532
  77. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 31: 233-239. https://doi.org/10.1038/nbt.2508
  78. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. 2013. Multiplex and homologous recombinationmediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688-691. https://doi.org/10.1038/nbt.2654
  79. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821. https://doi.org/10.1126/science.1225829
  80. Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764. https://doi.org/10.1126/science.1079512
  81. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757-761. https://doi.org/10.1534/genetics.110.120717
  82. Rouet P, Smih F, Jasin M. 1994. Introduction of doublestrand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14: 8096-8106. https://doi.org/10.1128/MCB.14.12.8096
  83. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096
  84. Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569-573. https://doi.org/10.1038/nature13579
  85. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155: 733-740. https://doi.org/10.1099/mic.0.023960-0
  86. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4: 1020-1029. https://doi.org/10.1021/acssynbio.5b00038
  87. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, et al. 2017. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13:607-609. https://doi.org/10.1038/nchembio.2341
  88. Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, et al. 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl. Microbiol. Biotechnol. 99: 10575-10585. https://doi.org/10.1007/s00253-015-6931-4
  89. Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. 2017. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab. Eng. 40: 80-92. https://doi.org/10.1016/j.ymben.2017.01.004
  90. Meng J, Feng R, Zheng G, Ge M, Mast Y, Wohlleben W, et al. 2017. Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches. Synth. Syst. Biotechnol. 2: 130-136. https://doi.org/10.1016/j.synbio.2017.06.001
  91. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, et al. 2017. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem. Sci. 8: 3218-3227. https://doi.org/10.1039/C6SC04265A
  92. Wang Y, Cobb RE, Zhao H. 2016. High-efficiency genome editing of Streptomyces species by an engineered CRISPR/Cas System. Methods Enzymol. 575: 271-284. https://doi.org/10.1016/bs.mie.2016.03.014
  93. Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. 2017. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163: 1148-1155. https://doi.org/10.1099/mic.0.000501
  94. Tao W, Yang A, Deng Z, Sun Y. 2018. CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products. Front Microbiol. 9: 1660. https://doi.org/10.3389/fmicb.2018.01660
  95. Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, et al. 2015. In vitro CRISPR/Cas9 system for efficient targeted DNA editing. MBio 6: e01714-01715.
  96. Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6: 8101. https://doi.org/10.1038/ncomms9101
  97. Kang HS, Charlop-Powers Z, Brady SF. 2016. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth. Biol. 5: 1002-1010. https://doi.org/10.1021/acssynbio.6b00080
  98. Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y, et al. 2016. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis. Chem. Sci. 7: 376-385. https://doi.org/10.1039/C5SC03059E
  99. Li L, Wei K, Liu X, Wu Y, Zhensg G, Chen S, et al. 2019. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab. Eng. 52: 153-167. https://doi.org/10.1016/j.ymben.2018.12.001
  100. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNAguided platform for sequence-specific control of gene expression. Cell 152: 1173-1183. https://doi.org/10.1016/j.cell.2013.02.022
  101. Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z, et al. 2018. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol. J. 13: e1800121. https://doi.org/10.1002/biot.201800121
  102. Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z, et al. 2017. Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl. Environ. Microbiol. 83: e02889-02816.
  103. Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 107: 2646-2651. https://doi.org/10.1073/pnas.0914833107
  104. Gomez-Escribano JP, Bibb MJ. 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 4: 207-215. https://doi.org/10.1111/j.1751-7915.2010.00219.x
  105. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771. https://doi.org/10.1016/j.cell.2015.09.038
  106. Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, et al. 2018. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl. Environ. Microbiol. 84: e00827-00818.
  107. Xu M, Wright GD. 2018. Heterologous expression-facilitated natural products' discovery in actinomycetes. J. Ind. Microbiol. Biotechnol. 46: 415-431.
  108. Liu R, Deng Z, Liu T. 2018. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab. Eng. 50: 74-84. https://doi.org/10.1016/j.ymben.2018.05.015
  109. Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. 2017. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces Species. Front. Microbiol. 8: 394.
  110. Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13: 509-523. https://doi.org/10.1038/nrmicro3496
  111. Katz M, Hover BM, Brady SF. 2016. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol Biotechnol. 43: 129-141. https://doi.org/10.1007/s10295-015-1706-6
  112. Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 16: 96. https://doi.org/10.1186/s12934-017-0708-7
  113. Nah HJ, Woo MW, Choi SS, Kim ES. 2015. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 14: 140. https://doi.org/10.1186/s12934-015-0325-2
  114. Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. 2015. Genome engineering and direct cloning of antibiotic gene clusters via phage varphiBT1 integrase-mediated sitespecific recombination in Streptomyces. Sci Rep. 5: 8740. https://doi.org/10.1038/srep08740
  115. Greunke C, Duell ER, D'Agostino PM, Glockle A, Lamm K, Gulder TAM. 2018. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential. Metab. Eng. 47: 334-345. https://doi.org/10.1016/j.ymben.2018.03.010
  116. Shao Z, Luo Y, Zhao H. 2011. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol. Biosyst. 7: 1056-1059. https://doi.org/10.1039/c0mb00338g
  117. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, et al. 2012. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 30: 440-446. https://doi.org/10.1038/nbt.2183
  118. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, et al. 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. USA 111: 1957-1962. https://doi.org/10.1073/pnas.1319584111
  119. Orr-Weaver TL, Szostak JW, Rothstein RJ. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci USA 78: 6354-6358. https://doi.org/10.1073/pnas.78.10.6354
  120. Lee NC, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res. 43: e55. https://doi.org/10.1093/nar/gkv112
  121. Bu QT, Yu P, Wang J, Li ZY, Chen XA, Mao XM, et al. 2019. Rational construction of genome-reduced and highefficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb. Cell Fact. 18: 16. https://doi.org/10.1186/s12934-019-1055-7
  122. Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. 2018. Generation of a clusterfree Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 49: 316-324. https://doi.org/10.1016/j.ymben.2018.09.004
  123. Xu M, Wang Y, Zhao Z, Gao G, Huang SX, Kang Q, et al. 2016. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library in Streptomyces spp. Appl. Environ. Microbiol. 82: 5795-5805. https://doi.org/10.1128/AEM.01383-16
  124. Liu Q, Xiao L, Zhou Y, Deng K, Tan G, Han Y, et al. 2016. Development of Streptomyces sp. FR-008 as an emerging chassis. Synth. Syst. Biotechnol. 1: 207-214. https://doi.org/10.1016/j.synbio.2016.07.002
  125. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, et al. 2013. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 2: 384-396. https://doi.org/10.1021/sb3001003
  126. Daniels W, Bouvin J, Busche T, Kalinowski J, Bernaerts K. 2016. Finding targets for genome reduction in Streptomyces lividans TK24 using flux balance analysis. IFAC-PapersOnLine 49: 252-257.
  127. Toro L, Pinilla L, Avignone-Rossa C, Rios-Estepa R. 2018. An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies. Bioprocess Biosyst. Eng. 41: 657-669. https://doi.org/10.1007/s00449-018-1900-9
  128. Kallifidas D, Jiang G, Ding Y, Luesch H. 2018. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb. Cell Fact. 17: 25. https://doi.org/10.1186/s12934-018-0874-2
  129. Machado H, Tuttle RN, Jensen PR. 2017. Omics-based natural product discovery and the lexicon of genome mining. Curr. Opin. Microbiol. 39: 136-142. https://doi.org/10.1016/j.mib.2017.10.025
  130. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191. https://doi.org/10.1038/nature14299
  131. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, et al. 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566: 218-223. https://doi.org/10.1038/s41586-019-0908-x
  132. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPRCas system. Nucleic Acids Res. 41: 7429-7437. https://doi.org/10.1093/nar/gkt520
  133. Siu KH, Chen W. 2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat. Chem. Biol. 15: 217-220. https://doi.org/10.1038/s41589-018-0186-1
  134. Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, et al. 2011. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J. Bacteriol. 193: 1142-1153. https://doi.org/10.1128/JB.01269-10
  135. Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, et al. 2005. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151: 1507-1523. https://doi.org/10.1099/mic.0.27757-0
  136. Myronovskyi M, Rosenkranzer B, Luzhetskyy A. 2014. Iterative marker excision system. Appl. Microbiol. Biotechnol. 98: 4557-4570. https://doi.org/10.1007/s00253-014-5523-z
  137. Thapa LP, Oh TJ, Lee HC, Liou K, Park JW, Yoon YJ, et al. 2007. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003. Appl. Microbiol. Biotechnol. 76: 1357-1364. https://doi.org/10.1007/s00253-007-1096-4
  138. Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. 2013. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8: e69319. https://doi.org/10.1371/journal.pone.0069319
  139. Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L. 2000. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob. Agents Chemother. 44: 1214-1222. https://doi.org/10.1128/AAC.44.5.1214-1222.2000
  140. Zhao Z, Shi T, Xu M, Brock NL, Zhao YL, Wang Y, et al. 2016. Hybrubins: Bipyrrole tetramic acids obtained by crosstalk between a truncated undecylprodigiosin pathway and heterologous tetramic acid biosynthetic genes. Org. Lett. 18: 572-575. https://doi.org/10.1021/acs.orglett.5b03609

Cited by

  1. Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development vol.35, pp.11, 2019, https://doi.org/10.1007/s11274-019-2746-2
  2. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs vol.8, pp.4, 2019, https://doi.org/10.3390/antibiotics8040157
  3. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis vol.7, 2019, https://doi.org/10.3389/fmolb.2020.00087
  4. Reporter‐Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis vol.21, pp.13, 2020, https://doi.org/10.1002/cbic.201900748
  5. The antitumor antibiotic mithramycin: new advanced approaches in modification and production vol.104, pp.18, 2019, https://doi.org/10.1007/s00253-020-10782-x
  6. Decoding the Papain Inhibitor from Streptomyces mobaraensis as Being Hydroxylated Chymostatin Derivatives: Purification, Structure Analysis, and Putative Biosynthetic Pathway vol.83, pp.10, 2019, https://doi.org/10.1021/acs.jnatprod.0c00201
  7. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters vol.7, 2020, https://doi.org/10.1038/s41597-020-0395-9
  8. Transcriptome and translatome profiles of Streptomyces species in different growth phases vol.7, 2019, https://doi.org/10.1038/s41597-020-0476-9
  9. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference vol.30, pp.12, 2019, https://doi.org/10.4014/jmb.2008.08058
  10. Recent Advances in Silent Gene Cluster Activation in Streptomyces vol.9, 2021, https://doi.org/10.3389/fbioe.2021.632230
  11. Elucidating the Regulatory Elements for Transcription Termination and Posttranscriptional Processing in the Streptomyces clavuligerus Genome vol.6, pp.3, 2019, https://doi.org/10.1128/msystems.01013-20
  12. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways vol.49, 2019, https://doi.org/10.1016/j.biotechadv.2021.107759
  13. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes vol.38, pp.7, 2019, https://doi.org/10.1039/d0np00071j
  14. Advances in Accurate Microbial Genome-Editing CRISPR Technologies vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2106.06056
  15. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21 vol.167, pp.9, 2019, https://doi.org/10.1099/mic.0.001084
  16. Adaptive Optimization Boosted the Production of Moenomycin A in the Microbial Chassis Streptomyces albus J1074 vol.10, pp.9, 2021, https://doi.org/10.1021/acssynbio.1c00094
  17. Recent advances in the research of milbemycin biosynthesis and regulation as well as strategies for strain improvement vol.203, pp.10, 2021, https://doi.org/10.1007/s00203-021-02575-1
  18. Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization vol.20, pp.1, 2019, https://doi.org/10.3390/md20010006