DOI QR코드

DOI QR Code

Evaluation of Relative Corrosion Rate depending on Local Location and Installation of Structural Member in Steel Water Gate

강재 수문의 부재 위치 및 설치 방향에 따른 상대 부식속도 평가

  • 하민균 (경남과학기술대학교 토목공학과) ;
  • 정영수 (부산대학교 지진방재연구센터) ;
  • 박승훈 (한국수자원공사 남강지사) ;
  • 안진희 (경남과학기술대학교 토목공학과)
  • Received : 2019.09.19
  • Accepted : 2019.12.30
  • Published : 2019.12.01

Abstract

The corrosion amounts of steel structures can be different depending on their installation condition and height. Thus, their corrosion maintenance should be considered depending on installation conditions of local structural members. In this study, an atmospheric exposure test was conducted to evaluate the corrosion amount and the corrosion rate depending on the installation condition and height of a steel water gate using monitoring steel plates and corrosion environment measuring sensors. The mean corrosion depth was evaluated using the weight loss method and the galvanic corrosion current was measured by corrosion environment measuring sensors. Local corrosion rate of local structural member in steel water gate was estimated using measured mean corrosion depths and galvanic corrosion currents. From this measurement results, the corrosion damage in horizontal member of the cross beam was highly evaluated than those of other structural member as skin plate, etc. The relative difference in the corrosion rate of a local structural member could be highly affected by local corrosion environments of steel water gate members. Therefore, an appropriate maintenance method should be considered for local corrosion damages of local structural members determined by local corrosion environments of a steel water gate.

강재로 제작된 구조물의 부식량은 설치형태에 따라 상이하게 나타나므로 그에 따른 효율적인 관리가 필요하다. 본 연구에서는 강재 수문의 설치형태와 높이에 따른 부식량과 부식속도를 평가하기 위하여 설치형태와 높이에 따라 모니터링 시험체와 부식환경측정 센서를 설치하여 대기노출실험을 실시하였다. 노출기간에 따라 모니터링 시험체를 회수하여 중량감소법으로 평가된 평균부식두께와 부식환경측정센서를 통하여 계측된 갈바닉 부식전류량과의 상관관계를 이용하여 강재 수문의 설치형태와 높이에 따른 향후 부식량을 예측하였다. 본 연구 결과 수문의 가로보 수평부재는 상대적으로 가로보 스킨플레이트 부재 등의 부식손상량과 비교하면 매우 크게 발생하고 있으며, 수문 부재의 국부적 환경에 따라 부식속도가 크게 영향을 받을 수 있음을 확인할 수 있었다. 따라서 강재 수문의 국부적 부식환경 차이에 따른 부식손상 수준을 고려한 수문의 적절한 유지관리가 필요할 것으로 판단된다.

Keywords

References

  1. Jeong, Y. S., Lee, Y. B., Kim, K. H., Park, K. T., Ahn, J. H. (2017), Evaluation of Coating Life for Effective Maintenance on Drainage Gate, Journal of Korean Society of Hazard Mitigation, 17(3), 217-223. https://doi.org/10.9798/KOSHAM.2017.17.3.217
  2. K-water. (2013), A Study on Improvement of Structural Stability of Dams and Facility of a Water Gate, Publication of K-water.
  3. Lee, C. J., Kim, D. G., Kim, J. S. (2019), Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I), Ecology and Resilient Infrastructure, 6(1), 23-33.
  4. Lee, C. J., Kim D. G., Hwang, S. Y., Kim, Y. J. (2019), Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II), Ecology and Resilient Infrastructure, 6(1), 34-48.
  5. Bea, J. J., Kim, H. S., Kim, Y. S., Lee, J. H. (2009), Earthquake Analysis of Dam Floodgate Using Calibrated Added Mass, Journal of the Earthquake Engineering Society of Korea, 13(5), 31-40. https://doi.org/10.5000/EESK.2009.13.5.031
  6. Lee, Y. B., Jeong, Y. S., Seong, T. R., Ahn, J. H. (2018), Estimation of Mean Corrosion Depth of Structural Steel Using Thickness of Corrosion Products, Journal of Korean Society of Steel Construction, 30(3), 153-161. https://doi.org/10.7781/kjoss.2018.30.3.153
  7. Ahn, J. H., Jeon, S. H., Seong, T. R., Jeong, Y. S. (2019), Estimation of Corrosion Damage Rate Using Corrosion Current Depending on Atmospheric Corrosion Environment, Journal of Korean Society of Steel Construction, 31(4), 253-260. https://doi.org/10.7781/kjoss.2019.31.4.253
  8. Jeon, S. H., Ha, M. G., Jeong, Y. S., Ahn, J. H. (2019), Evaluation of Corrosion Damage of Structural Steel Depending on Atmospheric Exposure Test, Journal of Korean Society of Steel Construction, 31(4), 245-252. https://doi.org/10.7781/kjoss.2019.31.4.245
  9. Park, J. C. (2015), Stability Analysis of Steel Water Gate, Master thesis, Jeonju University.
  10. KS D ISO 3502 (2016), Rolled steels for bridges structure.
  11. KS D ISO 8407 (2014), Corrosion of metals and alloys - Removal of corrosion product from corrosion test specimens.
  12. KS D ISO 9223 (2015), Corrosion of metals and alloys - Corrosivity of atmosphers - Classification.
  13. Mizuno, D., Suzuki, S., Fujita, S., Hara, N. (2014), Corrosion Monitoring and Materials Selection for Automotive Environments by Using Atmospheric Corrosion Monitor (ACM) sensor, Corrosion Science, 83, 217-225. https://doi.org/10.1016/j.corsci.2014.02.020
  14. Ahn, J. H., Jeong, Y. S., Kim, I. T., Jeon, S. H., Park, C. H. (2019), A Method for Estimating Time-Dependent Corrosion Depth of Carbon and Weathering Steel Using an Atmospheric Corrosion Monitor Sensor, Sensors, 19(6), 1416. https://doi.org/10.3390/s19061416
  15. Kim, S. G., Yoon, G. S., Kang, T. W., Yeo D. H., Kim, J. S., Song, S. M. (2015), Study on the Prediction Method of Steel Water Gate Residual Life, Yooshin Engineering Corporation, 22, 247-274.

Cited by

  1. 부식전류 평가를 통한 강박스 부재의 상대적 부식환경 평가 vol.24, pp.6, 2019, https://doi.org/10.11112/jksmi.2020.24.6.171