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ABSTRACT

Long noncoding RNAs (lncRNAs) are non-protein coding RNAs of more than 200 nucleotides 
in length. Despite the term “noncoding”, lncRNAs have been reported to be involved in gene 
expression. Accumulating evidence suggests that lncRNAs play crucial roles in the regulation 
of immune system and the development of autoimmunity. lncRNAs are expressed in various 
immune cells including T lymphocytes, B lymphocytes, macrophages, neutrophils, dendritic 
cells, and NK cells, and are also involved in the differentiation and activation of these immune 
cells. Here, we review recent studies on the role of lncRNAs in immune regulation and the 
differential expression of lncRNAs in various autoimmune diseases.
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INTRODUCTION

Large portions of the human genome, which had previously been considered as 
‘transcriptional noise’ with no coding capacity as protein-coding genes, are estimated to be 
less than 2% of whole genome (1). The ENCyclopedia of DNA Element Consortium reported 
that most of the genome is transcribed as non-protein coding RNA (ncRNA) (2). Many recent 
studies have revealed that ncRNAs are important regulators of gene expression and also play 
important roles in the pathogenesis of various diseases. ncRNAs are largely categorized into 
small ncRNAs (<200 nucleotides [nt]) and long ncRNAs (lncRNAs) (>200 nt) according to 
their transcript size (3). A great deal of research has been focused on microRNAs (miRNAs), 
one type of small ncRNA. miRNAs have been reported to be involved in the regulation 
of gene expression and development of autoimmune diseases including systemic lupus 
erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis, Sjögren's syndrome (SS), 
multiple sclerosis, and type 1 diabetes mellitus (4,5).

Recently, researchers have started to pay more attention to lncRNAs, which account for 
major portion of ncRNAs. Compared with miRNAs, the mechanisms of lncRNA function 
are more diverse due to structural complexity of lncRNAs (3,6). Early studies primarily 
showed that lncRNAs are related to diverse cellular responses, including cell differentiation, 
cell proliferation, and apoptosis (7-9). Cancer, along with cardiovascular and neurological 
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diseases, was the main focus of lncRNA research (10). However, more recently, accumulating 
evidence that lncRNAs participate in immune cell differentiation and immune responses, 
suggests that lncRNAs are essential components in the development of autoimmune diseases 
(11-15). In this review, we are going to introduce classification, and mechanism of action of 
lncRNAs, the influences of lncRNAs on various immune cells, and the role of lncRNAs in 
autoimmune diseases such as SLE, RA, polymyositis (PM)/dermatomyositis (DM), and SS.

CATEGORIZATION OF LNCRNAS

The lncRNAs are more categorized according to various genomic architectures as well as 
functional mechanisms (Fig. 1). Based on location in the genome, lncRNAs can be divided 
into intergenic lncRNAs (lincRNAs) and intronic lncRNAs (3,16). LincRNAs are transcribed 
inter genetically from both DNA strands which do not overlap protein-coding genes. Whereas 
intronic lncRNAs are transcribed from introns of protein-coding genes in either direction 
and terminate without overlapping exons. Thus, lincRNAs and intronic lncRNAs could be 
regulated via different transcription activation mechanisms. In addition, lncRNAs are also 
classified regarding the product orientation of the DNA strand (17,18). Sense lncRNAs are 
transcribed from the sense strand of protein-coding genes and contain exons that overlap 
with part of protein-coding genes or cover the entire sequence of a protein-coding gene 
containing an intron. On the contrary, antisense lncRNAs are transcribed from the antisense 
strand of the protein-coding genes that overlap with exon or intron regions, which cover the 
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Figure 1. Classification of lncRNAs. The lncRNAs can be classified based upon genomic structures and product 
orientation of the DNA strand. Based on genomic location, lncRNAs are divided into lincRNAs and intronic lncRNAs. 
And, according to the direction of transcription, lncRNAs can be classified into sense and antisense lncRNAs.
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entire protein-coding gene. Interestingly, most of the lncRNAs are discovered from protein-
coding genes or the antisense of the protein-coding genes using cap-analysis gene expression 
and oligo-dT guided reverse transcription, suggesting that they also possess 5′ cap and 3′ 
poly-A tail like mRNA (19).

LNCRNAS AS POTENT GENE REGULATORS

Recent studies have shown that lncRNAs are involved in various gene transcription regulation 
mechanisms through interactions with transcription factors or epigenetic modifiers (Fig. 2). 
lncRNAs can play as cofactors to modify the activity of transcription factors. For instance, 
NF-κB-interacting lncRNA binds NF-κB/IκB in a ternary complex, which inhibits IKK-
mediated IκB phosphorylation by directly masking the phosphorylation sites (20). lncRNA-
Evf2 is transcribed from conserved distal enhancer and recruits the transcription factor DlX2 
to the same enhancer to induce expression of adjacent protein-coding genes (21). Some 
lncRNAs are also involved in post-transcriptional regulation of mRNAs such as capping, 
splicing, editing, transport, translation, degradation, and stability at various control sites. 
The lncRNA metastasis-associated lung adenocarcinoma transcript 1 is known to regulate 
alternate splicing by interacting with multiple splicing factors (22). In addition, lncRNA 
Gomafu/myocardial infarction-associated transcript is localized to a nuclear domain, which 
may block spliceosome formation and affect the mRNA splicing by sequestering splicing 
factor 1 (23).

Epigenetic modifications are widely known important gene transcription regulation 
mechanism. In this context, lncRNAs (antisense non-coding RNA in the INK4 locus 
[ANRIL], X-inactive specific transcript, HOX transcript antisense RNA [HOTAIR], and 
KCNQ1 opposite strand/antisense transcript 1 [KCNQ1OT1]) have crucial roles as epigenetic 
regulators. lncRNA KCNQ1OT1 binds to polycomb repressive complex 2 (PRC2) and the 
methyl-transferase G9a (EHMT2), whereas ANRIL binds to PRC1 and PRC2 (24). lncRNA 
HOTAIR forms histone modifying complexes, which coordinates the targeting of specific 
repressive histone modifying complexes (25). Additionally, lncRNAs have also been proven 
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Figure 2. Functions of lncRNAs. lncRNAs regulate gene transcription through interactions with transcription 
factors or epigenetic modifications. lncRNAs can change activity of transcription factor, or regulate post-
transcriptional events of mRNAs, or modify epigenetically.
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to X chromosome inactivation, gene silencing, and gene imprinting via regulation of DNA 
methyltransferases (24,26).

REGULATION OF THE IMMUNE SYSTEM BY LNCRNAS

Dysregulation of the immune system can be a major cause of the development of various 
autoimmune diseases, as well as infectious diseases and cancers. The regulation of gene 
expression involved in the immune system is particularly crucial for making decisions between 
immune tolerance and autoimmunity. Recently, increasing evidence has revealed that lncRNAs 
play an important role in the regulation of the immune system. However, to date, the study of 
lncRNAs in immune system regulation remains challenging due to the complexity and diversity of 
the immune system. The immune system is roughly divided into innate and adaptive immunities. 
Coordination of innate and adaptive immune responses has a critical role in biological and 
pathological immune responses. Here, we are going to review the roles of lncRNAs in immune 
responses. Table 1 shows representative lncRNAs that regulate immune responses.

The role of lncRNAs as regulators of innate immunity
Innate immunity is defined as the first line of host defense against pathogens and induces 
adaptive immune system to conduct effector functions (27,28). The innate immune system is 
mainly mediated by dendritic cells (DCs), macrophages, and NK cells (29).

There is a lncRNA associated with the regulation of the life span in short-lived myeloid cells. 
Myeloid RNA regulator of Bim-induced death (Morrbid) is a lncRNA which is highly expressed 
in short-lived myeloid cells such as neutrophils, eosinophils, and ‘classical’ monocytes (30). 
These short-lived myeloid cells provide the first line of defense against pathogens and the 
regulation of their life span is vital for protective host immune responses (31,32). Morrbid has 
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Table 1. Summary of lncRNAs involved in immune responses
Type of 
immunity

Source lncRNAs Function Mechanism of action Reference

Innate 
immunity

Myeloid cell Morrbid Control lifespan of short-lived myeloid cells 
(neutrophils, eosinophils, monocytes)

Inhibiting Bcl2l11 (Bim) transcription (30)

DC lnc-DC DC differentiation Phosphorylating STAT3 (13)
DC macrophage lincRNA-Cox2 Regulate expression of proinflammatory genes Interacting with hnRNP-A/B and hnRNP-A2/B1 (15)
Macrophage THRIL Positively regulate TNF-α expression Interacting with hnRNPL (37)
Macrophage mcircRasGEF1B Positively regulate ICAM-1 expression Acting as a miRNA sponge (38)
Monocyte PACER Induce PTGS2 expression Sequestrating NF-κB subunit p50 (39)
Monocyte macrophage lincRNA-EPS Restrain inflammation Binding to hnRNPL (40)
Erythrocyte
Macrophage lnc13 Restrain inflammation Binding to hnRNPL (41)
Fibroblast Lethe Restrain inflammation Binding to NF-κB subunit RelA (42)

Adaptive 
immunity

Th1 cell linc-MAF-4 Induce Th1 cell differentiation Suppressing MAF expression (43)
Th2 cell lincR-Ccr2-5′AS Induce Th2 cell migration In a GATA-3 dependent manner (44)
Th2 cell TH2-LCR Positively regulate the transcription of Th2 

cytokine gene
Recruiting WDR5-containing complexes (14)

Th1 cell CD8+ T cell NeST (Tmevpg1) Enhance IFN-γ expression Binding to WDR5 (47)
CD8+ T cell lncRNA-CD244 Suppress TNF-α and IFN-γ expression Recruiting EZH2 to the Ifng and Tnf promoters (50)
T cell NRON Maintain resting state of T cells Sequestering phosphorylated NFAT in the 

cytoplasm
(51)

Treg cell lnc-EGFR Stimulate Treg differentiation Binding to EGFR and inhibiting interaction 
between EGFR and c-CBL

(53)

B cell FAS-AS1 Enhance Fas-mediated apoptosis in B cell 
lymphoma

Binding to RBM5 and inhibiting RBM5-mediated 
alternative splicing of FAS pre-mRNA

(54)

https://immunenetwork.org


been reported to control the lifespan of these cells by repressing the transcription of the pro-
apoptotic gene, Bcl2l11, which encodes Bim (30). The expression of Morrbid can be induced 
by cytokines of the common β-chain receptor family (IL-3, IL-5, and GM-CSF) in vitro (30). 
Eosinophils from patients with high plasma concentrations of IL-5, who have hypereosinophilic 
syndrome, show high expression of Morrbid compared with eosinophils from healthy controls 
(30,33). The expression of Morrbid in eosinophils is also positively correlated with plasma IL-5 
concentrations (30). The findings suggest that Morrbid might have a significant role in diseases 
which are related with altered lifespans of short-lived myeloid cells.

DCs are the primary antigen presenting cells for T cells and act as initiators of innate and 
adaptive immunity (34). Human DCs exclusively express the lncRNA lnc-DC, which was 
discovered by transcriptome microarray analysis and RNA sequencing (13). When common 
myeloid progenitor cells or monocytes differentiate into DCs, the expression of lnc-DC 
is upregulated. lnc-DC knockdown causes considerable change in the regulation of DC 
function-related genes. Knockdown of lnc-DC diminishes the ability of DCs to uptake 
antigens and results in the downregulation of molecules associated with T cell activation, 
including CD40, CD80, CD86, and HLA-DR, and the impairment of CD4+ T cell proliferation 
and attenuation of IL-12 production upon LPS stimulation (13). lnc-DC, which usually 
functions in the cytoplasm, interacts with STAT3 required for DC development and function, 
preventing it from binding to the tyrosine-phosphatase SHP1. Phosphorylation of STAT3 at 
Tyr705 by lnc-DC leads to translocation of STAT3 to the nucleus, and consequently promotes 
DC differentiation and activation of the immune system (13,35). These data suggest that lnc-
DC is crucial for DC differentiation and functions.

There are lncRNAs involved in the induction of inflammation. The expression of lincRNA-
cyclooxygenase 2 (Cox2) is markedly upregulated after stimulation with TLR4 agonist in 
CD11C+ bone marrow-derived human DCs (36). TLR2 ligation induces the expression of 
lincRNA-Cox2 in murine bone marrow-derived macrophages (15). TLR4 and TLR7/8 ligands 
also leads to increased expression of both lincRNA-Cox2 and the Ptgs2 (also known as Cox2) 
gene via the Myd88-NF-kB signaling pathway (15). LincRNA-Cox2 controls the transcription 
of genes associated with the inflammatory response by interacting with heterogeneous 
nuclear ribonucleoprotein (hnRNP)-A/B and -A2/B1 (15).

The lncRNA TNF-α and hnRNPL related immunoregulatory lincRNA (THRIL) (also known 
as linc1992), which is induced by activation of TLR2 signaling in human THP1 macrophages, 
is a regulator of TNF-α induction. Knockdown of THRIL results in reduced expression of 
TNF-α mRNA and protein in macrophage cells (37). THRIL binds to hnRNPL and upregulates 
TNF-α gene transcription (37). Knockdown of Hnrpl leads to a reduction in the levels of TNF-α 
produced by macrophages.

Mouse circRasGEF1B (mcircRasGEF1B), which is a kind of circular RNA, is expressed in 
macrophages induced by LPS. LPS-induced expression of mcircRasGEF1B is dependent on 
NF-κB. The action of mcircRasGEF1B is like a ‘sponge’ for miRNA, which targets intercellular 
adhesion molecule 1 (ICAM-1) (38). Knockdown of mcircRasGEF1B in LPS-activated 
macrophages reduces ICAM-1, which is important to initiate inflammation by homing 
leukocytes to inflammatory sites (38).

The lncRNA p50-associated COX-2 extragenic RNA (PACER) is expressed in human 
monocytes after stimulation with LPS (39). PACER induces PTGS2, which encodes Cox-2, by 
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sequestrating the NF-κB subunit p50 away from the PTGS2 promoter (39). PACER acts as an 
activator of the inflammatory response.

There are also lncRNAs associated with restrain inflammatory responses. LincRNA erythroid 
prosurvival (lincRNA-EPS) is expressed in DCs, macrophages, and erythrocytes. lincRNA-
EPS is thought to repress inflammation by binding to hnRNPL. A previous study showed that 
inflammation was induced in lincRNA-EPS-deficient mice (40).

Similar to lincRNA-EPS, lnc13 functions as a suppressor of inflammation. The expression of 
lnc13 is observed in macrophages and TLR4 ligation downregulates its expression (41). By 
binding hnRNPD, lnc13 inhibits immune response genes (41).

The pseudogene lncRNA Lethe, which is named after the ‘river of forgetfulness’ in Greek 
mythology, is induced in mouse embryonic fibroblasts stimulated by proinflammatory 
cytokines such as IL-1β and TNF-α (42). Lethe exerts negative regulatory functions upon NF-κB; 
knockdown of Lethe results in the upregulation of NF-κB targets while overexpression of Lethe 
decreases the activity of an NF-κB reporter (42). Lethe acts by binding to the NF-κB subunit 
RelA, inhibiting the formation of active NF-κB complexes. Lethe functions as a restrictor of 
inflammatory responses.

The role of lncRNAs as regulators of adaptive immunity
Adaptive immunity is highly specific. Pathogen-induced innate immune responses trigger 
antigen-specific adaptive immune responses. The adaptive immune system mainly consists 
of T and B cells. Emerging evidence indicates that lncRNAs are associated with adaptive 
immune responses, although their role is not yet fully understood.

lncRNAs in T cell responses
The lncRNA linc-MAF-4 represses the expression of MAF, a Th2-associated transcription 
factor and drives T cell differentiation into Th1 cells (42). Downregulation of linc-MAF-4 
induces T cell differentiation toward the Th2 cell lineage (43). The linc-MAF-4 recruits 
chromatin modifiers such as lysine-specific demethylase 1 and enhancer of zeste homolog 
2 (EZH2) and inhibits MAF transcription (43). These results suggest that linc-MAF-4 is an 
important regulator of CD4+ T cell differentiation.

The lncRNA lincR-Ccr2-5′AS is specifically expressed in Th2 cells (44). The lincR-Ccr2-
5′AS, which is located at the 5′ end of Ccr2 and expressed via antisense transcription, plays 
a crucial role in controlling the migration of Th2 cells. GATA-3, the transcription factor of 
Th2 cells, regulates the expression of lincR-Ccr2-5′AS. The genes, which undergo changes in 
their expression following lincR-Ccr2-5′AS knockdown, considerably overlap with GATA-
3-dependent genes. lincRNA-Ccr2-5′AS is closely related with genes encoding Th2 cell 
chemokines, including Ccr1, Ccr2, Ccr3, and Ccr5. A previous murine experiment demonstrated 
that lincR-Ccr2-5′AS-depleted Th2 cells showed impaired migration to lung tissue after in vivo 
transfer, as compared with lincR-Ccr2-5′AS-sufficient Th2 cells (44).

lncRNA TH2-locus control region (LCR) is located at the 3′ end of the RAD50 gene that 
encodes a double-strand-break repair protein (45). TH2-LCR positively regulates the 
transcription of genes that encode Th2 cell cytokines including IL-4, IL-5, and IL-13 (14). 
The function of TH2-LCR might be associated with the recruitment of the WD40 repeat 
protein 5 (WDR5)-containing complex to the targeted genomic elements. A previous study 
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has revealed that depletion of TH2-LCR reduces WDR5 recruitment to IL-4 and IL-13, but no 
changes were found for IL-5 (45).

The lncRNA nettoie Salmonella pas Theiler's (NeST, also known as Theiler's murine 
encephalomyelitis virus persistence candidate gene 1 [Tmevpg1]) is expressed in Th1 cells, 
CD8+ T cells, and NK cells (46-48). NeST, which is located in the adjacent region to the 
IFN-γ encoding gene, is the lncRNA associated with T cell activation (49). The expression 
of NeST depends on the activities of the Th1 transcription factors STAT4 and T-bet, and 
NF-κB (44,47,48). The expression of NeST leads to the enhancement of IFN-γ production 
from activated CD8+ T cells. NeST binds to WDR5 and recruits the transcription-activation 
complex to the Ifng promoter, inducing the transcription of Ifng.

The lncRNA lncRNA-CD244, which functions in CD8+ T cells, is associated with the 
inhibition of T cell activation (50). CD244, a T cell inhibitory molecule, induces the 
expression of lncRNA-CD244 and lncRNA-CD244 mediates the suppression of TNF-α and 
IFN-γ by interacting with EZH2. In contrast, knockdown of lncRNA-CD244 increases the 
expression TNF-α and IFN-γ and improves CD8+ T cell function.

The lncRNA noncoding repressor of NFAT (NRON) was one of the first lncRNAs discovered in 
T cells. NRON represses T cell activation by inactivating the calcium-dependent transcription 
factor, NFAT (51). NFAT exists in a phosphorylated state under steady-state condition, 
but becomes dephosphorylated when the concentration of intracellular calcium increases 
(51,52). Dephosphorylated NFAT then translocates to the nucleus, inducing T cell activation. 
NRON sequesters phosphorylated NFAT in the cytoplasm, preventing its translocation to the 
nucleus. Depletion of NRON, therefore, leads to the nuclear translocation of NFAT, resulting 
in T cell activation (52).

There is a report that the lncRNA lnc-epidermal growth factor receptor (lnc-EGFR) stimulates 
Treg differentiation in hepatocellular carcinoma (HCC) tissues (53). Jiang et al. (53) revealed 
that increased expression of lnc-EGFR in CD4+ T cells was linked with Treg polarization in HCC. 
lnc-EGFR, which binds to EGFR specifically, blocks EGFR ubiquitination by inhibiting the 
interaction between EGFR and ubiquitin ligase, casitas B-lineage lymphoma (c-CBL). As EGFR 
ubiquitination by c-CBL leads to EGFR degradation, blocking EGFR ubiquitination results in 
maintenance of EGFR activation. So, lnc-EGFR maintains activation of EGFR by inhibiting the 
interaction between EGFR and c-CBL, leading to the stimulation of Treg differentiation.

lncRNAs in B cell responses
There is a report showing that the lncRNA Fas-antisense 1 (FAS-AS1) regulates B cell function 
indirectly (54). In human B cell lymphoma, the expression of FAS-AS1 induces Fas-mediated 
apoptosis. FAS-AS1 binds to RNA-binding motif protein 5 (RBM5) and inhibits RBM5-
mediated alternative splicing of FAS pre-mRNA. Alternative splicing of FAS pre-mRNA leads 
to the inhibition of cell apoptosis.

THE ROLE OF LNCRNAS IN AUTOIMMUNE DISEASES

Autoimmune diseases are thought to be caused by a complex combination of interactions 
involving genetic, immunological, and environmental factors. In the past, autoimmune 
diseases were considered to be rare, but now the overall prevalence of autoimmune diseases 
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is reported to be about 3%–5% in the general population, according to improved diagnostic 
modalities (55,56). Despite significant advances in revealing the pathogenesis of autoimmune 
diseases, the pathogenesis of autoimmune diseases is not yet fully understood. The evidence 
that lncRNA is involved in immunological responses indicates that the dysregulation 
of lncRNAs participates in the pathogenesis of autoimmune diseases. Table 2 shows 
representative lncRNAs that are involved in the development of autoimmune diseases.

lncRNAs in SLE
SLE is a systemic autoimmune disease characterized by generation of multiple autoantibodies 
and immune complex deposition, resulting in damage to organs including the kidneys, 
lungs, brain, and heart (57). Although the pathogenesis of SLE remains unclear, 
accumulating evidence suggests that lncRNAs might contribute to its development.

Dysregulated TLR4 signaling have been reported to be associated with the development 
of SLE (58-60). There is a lncRNA, which is associated with SLE by the regulation of TLR4 
signaling. A previous study found that the lncRNA nuclear enriched abundant transcript 1 
(NEAT1) is associated with the pathogenesis of SLE (61). NEAT1 was upregulated in PBMCs 
of patients with SLE compared to that in the PBMCs of healthy controls. The expression of 
NEAT1 was positively correlated with SLE Disease Activity Index (SLEDAI) score which is an 
index for measuring clinical disease activity of SLE. In vitro study with human monocytic cell 
line, NEAT1 expression was increased after LPS stimulation. Silencing NEAT1 with siRNA 
in LPS-stimulated human monocytic cell line led to reduced expression of IL-6, CCL2, and 
CXCL10, which are reported to be involved in the pathogenesis of SLE. NEAT1 is also involved 
in the TLR4-mediated inflammatory response by affecting the activation of late mitogen-
activated protein kinase signaling pathways.
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Table 2. Summary of lncRNAs involved in autoimmune diseases
Autoimmune 
disease

lncRNAs Source Clinical application Reference

SLE NEAT1 PBMCs Positively correlate with SLEDAI (61)
Gas5 Plasma Negatively correlate with ESR and SLEDAI-2K (65)

CD4+ T cell
B cell

RA HOTAIR PBMCs Overexpressed in PBMCs, serum exosome of RA (71)
Serum exosome Suppressed in differentiated osteoclast and rheumatoid synoviocytes
Osteoclast
Synoviocyte

H19 Synovial tissue Overexpressed in RA synovial tissue (72)
lincRNA-p21 Whole blood Suppressed in RA (73)
LOC100652951 T cell Overexpressed in RA (74)
LOC100506036
ENST00000483588 FLS Overexpressed in RA (87)

Positively correlated with C-reactive protein and simplified disease activity index score
ENST00000438399 FLS Suppressed in RA (87)
uc004afb.1
ENST00000452247
GAPLINC FLS Overexpressed in RA (75)

DM ENST00000541196.1 Muscle Overexpressed in DM (81)
uc011ihb.2
linc-DGCR6-1
ENST00000551761.1 Muscle Decreased in DM (81)
ENST00000583156.1

SS Tmevpg1 CD4+ T cell Overexpressed in SS (86)
Correlate with SSA, ESR, IgG

https://immunenetwork.org


Recent genome-wide association studies showed that chromosomal region 1q25 is an SLE-
susceptible locus (62). The genetic evidence that the lncRNA growth arrest-specific transcript 
5 (Gas5) is located within chromosome region 1q25 indicates a possible relationship between 
Gas5 and SLE susceptibility (63). In the murine model of SLE, Gas5 was linked with increased 
SLE susceptibility (64). Moreover, in human SLE, the expression of Gas5 in plasma, as well 
as in CD4+ T cells and B cells, was decreased in patients with SLE compared with healthy 
controls (65). Furthermore, the plasma expression levels of Gas5 were negatively correlated 
with erythrocyte sedimentation rates (ESR) and SLEDAI-2K scores in patients with SLE (65).

lncRNAs in RA
RA is a chronic autoimmune disease characterized by synovial inflammation and 
proliferation, which leads to severe joint destruction. The main clinical symptoms of RA 
include peripheral joint pain, swelling, and joint deformity, though RA can also affect 
systemic organs including the lungs, heart, and eyes. RA is a multifactorial disease in 
which host genetic factors, aberrant immune responses, and environmental factors can 
all contribute to its development (66-68). Recently, several studies have demonstrated that 
dysregulated lncRNAs play a critical role in the pathogenesis of RA.

One of the first mentioned lncRNAs in RA is HOTAIR. HOTAIR was previously reported as 
playing an important role in the pathogenesis of cancers (69,70). In 2015, Song et al. (71) 
reported that expression of HOTAIR was upregulated in PBMCs and the serum exosome of 
patients with RA compared to healthy controls. Moreover, upregulated HOTAIR can promote 
the migration of active macrophages while downregulated HOTAIR, which was observed in 
differentiated osteoclasts and rheumatoid synoviocytes, can inhibit the production of matrix 
metalloproteinase (MMP)-2 and MMP-13. These results indicate that aberrant expression of 
HOTAIR is involved in the pathogenesis of RA.

H19 was reported to be overexpressed in the synovial tissues of patients with RA compared 
with those from normal/joint trauma controls (72). Song et al. (71) also reported that high 
expression of H19 was observed in PBMCs from patients with RA compared to normal 
PBMCs based on microarray analysis, but microarray analysis data produced from serum 
exosomes did not support the results. Further studies are therefore needed to determine the 
role of H19 in the pathogenesis of RA.

A previous study reported that there is a relationship between depressed levels of lincRNA-p21 
and increased NF-κB activity in patients with RA (73). In the study, Spurlock et al. (73) 
demonstrated that the expression of lincRNA-p21 was lower in whole blood from patients with 
RA, while expression of phosphorylated p65 (RelA), which is a marker of NF-κB activation, 
was higher compared to that in control subjects. Methotrexate (MTX)-untreated RA patients 
showed reduced expression levels of lincRNA-p21 and increased levels of p65 compared to 
MTX-treated RA patients. An in vitro study using primary cells and transformed cell lines 
showed that MTX upregulated the expression of lincRNA-p21 via DNA-dependent protein 
kinase catalytic subunit (DNA PKcs). In addition, MTX suppressed NF-κB activity in TNF-α-
treated cells in a DNA PKcs-dependent manner, through the induction of lincRNA-p21.

Lu et al. (74) found that lncRNAs, LOC100652951 and LOC100506036, were overexpressed 
in T cells from patients with RA compared to controls. Use of biological agents reduced the 
expression levels of LOC100652951 in patients with RA. After activation of Jurkat cells with 
phorbol 12-myristate 13-acetate and ionomycin, upregulated expression of LOC100506036, 
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but not LOC100652951, was observed. Furthermore, knockdown of LOC100506036 in 
activated Jurkat cells leads to the downregulation of sphingomyelin phosphodiesterase 1 and 
NFAT, both of which contribute to inflammatory responses.

There was a report that the expression of lncRNA ENST00000483588 was increased and 
that the expression of three lncRNAs, including ENST00000438399, uc004afb.1, and 
ENST00000452247, were decreased in fibroblast-like synoviocytes (FLS) from patients 
with RA compared to controls (74). Among four lncRNAs, the expression level of 
ENST00000483588 showed a positive relationship with C-reactive protein and the disease 
activity index score of RA. The results suggest that those lncRNAs may play a role in the 
pathogenesis of RA, although further studies are needed to confirm this.

Recently, Mo et al. (75) reported the relationship between lncRNA gastric adenocarcinoma 
predictive long intergenic noncoding RNA (GAPLINC) and RA. The expression level of 
GPALINC was higher in FLS from patients with RA than in FLS from patients with traumatic 
injuries. GPALINC knockdown suppressed proliferation, migration, invasion, and the 
production of inflammatory cytokines and proteinases in RA FLS. Given that silencing of 
GAPLINC led to the increased expression of miR-382-5p and miR-575, GAPLINC is thought to 
play a role as a miRNA sponge. The results suggest the possibility that aberrant regulation of 
lncRNA GAPLINC contributes to the development of RA.

lncRNAs in PM/DM
PM and DM are idiopathic inflammatory myopathies which share some clinical features 
and show increased serum levels of muscle enzymes (76-78). PM and DM both present with 
symmetric, proximal muscle weakness and can also present with interstitial lung disease. 
However, they differ in some clinical aspects such as the presence of skin lesions, the 
histopathology of affected muscle, and prognosis.

There is a report that PM/DM are related with lncRNA 7SL expression, which is the RNA 
component of signal recognition particle (SRP) (79). It is well-known that patients with 
DM or PM can have autoantibodies against SRP (80). In the study, PM/DM patients with 
anti-SRP antibodies were shown to also possess autoantibodies against 7SL RNA. The 
presence of autoantibodies against 7SL RNA is also related with ethnic background, clinical 
manifestations, and seasonal onset of the disease. The study suggests that autoantibodies 
against 7SL RNA may be used as a serological marker for a subset of PM/DM.

Peng et al. (81) found 1,198 differentially expressed lncRNAs in muscles from patients with 
DM compared with muscles from healthy controls, using a microarray analysis. Among those 
lncRNAs, they validated five lncRNAs, including ENST00000541196.1, uc011ihb.2, linc-
DGCR6-1, ENST00000551761.1, and ENST00000583156.1. According to their bioinformatics 
prediction, linc-DGCR6-1 regulates the USP18 gene, which is type 1 interferon-inducible gene 
and is mainly found in perifascicular areas of muscle fibers in patients with DM. These results 
indicate that dysregulated lncRNAs can play a role in the pathogenesis of DM.

lncRNAs in SS
SS is a chronic, systemic autoimmune disease characterized by dry eye and dry mouth 
symptoms resulting from inflammation of exocrine glands (82). In addition to glandular 
manifestations, patients with SS can have various extraglandular manifestations which 
include pulmonary, skin, articular, renal, and neurological manifestations (83). The 
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production of autoantibodies against SSA or SSB is one of the hallmarks of SS (84). The 
pathogenesis of SS is multifactorial and is not yet fully understood.

Among various immunologic factors causing SS, Th1 response has been reported to be play 
an important role in the development of SS (85). There is a study that lncRNA Tmevpg1, 
which is known to regulate Th1 responses, is implicated in the pathogenesis of SS. The 
study suggests that there is a relationship between SS and lncRNA Tmevpg1 (86). Increased 
expression of Tmevpg1 was observed in CD4+ T cells in patients with SS compared with CD4+ 
T cells of healthy donors. The study also revealed that the expression levels of Tmevpg1 were 
correlated with the presence of SSA, as well as the levels of ESR and IgG. This study indicates 
that lncRNA Tmevpg1 can play a role in the pathogenesis of SS.

CONCLUSION

We have reviewed lncRNAs associated with immune cell functions and the pathogenesis 
of autoimmune diseases. Accumulating evidence suggests the possibility that lncRNAs 
may be strong candidates for immune regulators and could also be prime suspects in the 
development of autoimmune diseases. However, only a few studies have been conducted in 
autoimmune diseases so far. Therefore, further studies on lncRNAs in autoimmune diseases 
will be essential to answer questions about their role in the pathogenesis of autoimmune 
diseases. Moreover, future studies may provide novel molecular targets for accurate diagnosis 
and treatment of autoimmune diseases.
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