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ABSTRACT

The enhanced differentiation and activation of osteoclasts (OCs) in the inflammatory arthritis 
such as rheumatoid arthritis (RA) and gout causes not only local bone erosion, but also 
systemic osteoporosis, leading to functional disabilities and morbidity. The induction and 
amplification of NFATc1, a master regulator of OC differentiation, is mainly regulated by 
receptor activator of NF-κB (RANK) ligand-RANK and calcium signaling which are amplified 
in the inflammatory milieu, as well as by inflammatory cytokines such as TNFα, IL-1β and IL-6. 
Moreover, the predominance of CD4+ T cell subsets, which varies depending on the condition of 
inflammatory diseases, can determine the fate of OC differentiation. Anti-citrullinated peptide 
antibodies which are critical in the pathogenesis of RA can bind to the citrullinated vimentin 
on the surface of OC precursors, and in turn promote OC differentiation and function via 
IL-8. In addition to adaptive immunity, the activation of innate immune system including the 
nucleotide oligomerization domain leucine rich repeat with a pyrin domain 3 inflammasome 
and TLRs can regulate OC maturation. The emerging perspectives about the diverse and close 
interactions between the immune cells and OCs in inflammatory milieu can have a significant 
impact on the future direction of drug development.
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INTRODUCTION

Bone erosion and joint destruction is a characteristic finding of some inflammatory arthritis 
including rheumatoid arthritis (RA), psoriatic arthritis, and gout, and is associated with 
functional disability and increased mortality (1,2). The activation of osteoclasts (OCs), 
which is differentiated from myeloid OC precursors of the monocyte-macrophage lineage, 
is responsible for bone erosion in inflammatory arthritis (3). The origin of OCs in RA 
which is mainly located at the junction of synovial pannus and bone is not clear until now. 
Immature dendritic cells being rich in inflamed synovium can directly transdifferentiated 
into OCs in the inflammatory condition of RA (4). The presence of tartrate-resistant acid 
phosphatase-positive OCs on both synovial and marrow sides of subchondral bone suggests 
that subchondral bone marrow also can be the origin of OCs in RA (5). The treatment goal 
for bone-erosive inflammatory arthritis is to minimize the structural joint damage as well as 
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suppress inflammation itself (6). To achieve this goal, the mechanisms for differentiation 
and activation of OCs under inflammatory milieu have been actively investigated and its 
therapeutic application to inhibit the functions of OCs has been in the limelight. In this 
review, we will address the scientific achievements about the molecular mechanisms 
involving OC differentiation under an inflammatory condition, especially in RA.

ENHANCED EXPRESSION OF RANK LIGAND (RANKL) 
AND OSTEOCLAST-ASSOCIATED RECEPTOR (OSCAR) IN 
INFLAMMATORY ARTHRITIS

Interaction between the RANK and RANKL is critical for triggering OC precursors to 
differentiate into OCs (7). RANKL binds to RANK on the surface of OC precursors results in 
the recruitment of the adaptor molecule, TNF receptor-associated factor 6 (TRAF6), which 
activates NF-κB, AP-1 (c-Fos and c-Jun), MAP kinases, and phospholipase Cγ (7) (Fig. 1A). 
RANKL is mainly released by osteoblast and osteocyte during the process of physiologic bone 
remodeling (8,9). However, this role can be replaced by immune cells and fibroblast-like 
synoviocytes (FLS) in RA condition (10-13). Synovial B cells from RA patients are enriched 
with switched memory B cells (CD27+IgD−) and spontaneously express RANKL which is much 
higher than that of synovial T cells (10). Actually, B cell depletion therapy with rituximab 
significantly abrogates the joint erosion, which is associated with a decrease of synovial OC 
precursors and RANKL expression (14,15). In terms of T cells, Th17 cells express a significant 
amount of RANKL, but Th1 and Th2 cells express only a minimal amount (11,12). FLS can 
also be the major source of RANKL which is induced by inflammatory cytokines such as 
TNFα, IL-17, and IL-6 in RA (13). Recent study using conditional deletion of RANKL in T cells 
or FLS revealed that RANKL of FLS has a primary role compared to RANKL of T cells in bone 
erosion of inflammatory arthritis (16).
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Figure 1. Inflammatory cytokines such as TNFα, IL-1β, and IL-6 can replace the function of RANKL/RANK signaling during OC differentiation. (A) Schematic 
signaling pathways being critical for OC differentiation in physiologic condition. RANKL/RANK signaling activates NF-κB and c-Fos through TRAF6, leading to the 
transcription of NFATc1. Calcium signaling through ITAM motif of FcRγ or DAP12 increases nuclear translocation of NFATc1 through its dephosphorylation, and 
NFATc1 in turn promotes its own transcription within the nucleus, forming auto-amplification loop. (B) TNFα together with IL-1β or IL-6 can substitute for RANKL/
RANK signaling through the activation of NFkB, c-Fos and NFATc1 which are essential transcription factors for OC differentiation.

https://immunenetwork.org


Together with RANKL-RANK signaling, the immunoglobulin-like receptor, OSCAR 
and triggering receptor expressed on myeloid cells (TREM)-2 that is associated with the 
immunoreceptor tyrosine-based activation motif (ITAM)-containing FcRγ and DAP12, 
respectively, leads to the activation of calcium signaling, which induces the auto-
amplification of the NFATc1, master transcription factor for osteoclast differentiation (17,18) 
(Fig. 1A). Compared to controls, peripheral blood monocytes from RA patients express a 
higher level of OSCAR which is mainly induced by TNFα and associated with disease activity 
of RA (19). Actually, synovial tissues from active RA patients express higher levels of OSCAR 
than OA and control. OSCAR is mainly expressed by OCs at the erosion and by mononuclear 
cells around synovial microvessels (19,20). Ligands for OSCAR is mainly type I (ColI) 
and type II collagen (ColII) which are the most abundant collagen of bone and cartilage, 
respectively (21). Among collagens, ColII peptides efficiently stimulate RANKL-dependent 
OC differentiation (21). In addition to OCs, ITAM signaling from OSCAR-ColI/II interaction 
promotes survival and cytokine production of monocytes (22), and dendritic cells (23). 
TREM-2 is also highly expressed in the synovial tissue of RA, but it is not well elucidated the 
pathologic role in OC differentiation of RA (20).

INFLAMMATORY CYTOKINES AND OC DIFFERENTIATION: 
INTERACTION BETWEEN TNFα, IL-6, AND IL-1
RA is a prototype of chronic autoimmune arthritis with an increase of inflammatory 
cytokines including TNFα, IL-6, and IL-1 which can also affect the OC differentiation (24). 
TNFα can dramatically enhance OC differentiation in the presence of low level of RANKL 
that is insufficient to induce OC formation, while TNFα alone without RANKL failed to 
induce the differentiation of OCs (25). However, TNFα can induce OC differentiation in 
the recombination signal binding protein for immunoglobulin kappa J region (RBP-J)-
deficient cells even in the absence of RANKL, suggesting RBP-J, a key mediator of signaling 
by the canonical Notch pathway, acts as upstream negative regulator of TNFα-mediated 
OC differentiation (26). In addition, the higher dose of TNFα (20 ng/ml) can induce OC 
differentiation without RANKL, but it fails for OCs to have a resorbing capacity of dentin 
slice (27).

Considering RANKL is a member of TNF superfamily, it is not surprising the induction 
or enhancement of OC differentiation by TNFα sharing signaling pathways with RANKL 
(28,29). However, TNFα alone cannot produce complete OCs with resorption function 
(27). These limits of TNFα in OC differentiation are overcome by the presence of other 
inflammatory cytokines such as IL-1 and IL-6 (27,30). IL-1 and IL-6 can promote OC 
differentiation in the presence of RANKL in vitro, but they cannot differentiate OC on its own 
without RANKL (31,32). However, IL-1 together with TNFα can differentiate mouse bone 
marrow macrophages (BMMs) into functional OCs (27). IL-6 in the presence of TNFα also 
generates functional OCs in vitro which is independent to RANK/RANKL signaling (30). This 
TNFα and IL-6-mediated OC differentiation does not occur in the BMMs from NFATc1 or 
DAP12-defective mice (30), meaning that the differentiation into OC is possible regardless of 
ligand and receptor specificity when NFATc1 is induced by NF-κB and AP-1 (Jun/Fos complex) 
signaling, and is auto-amplified by the calcium signaling (Fig. 1B).
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T-CELL-MEDIATED REGULATION OF OC DIFFERENTIATION

Bone erosion of the involved joints is a characteristic finding in RA, but it rarely occur in 
the arthritis of systemic lupus erythematosus (SLE), even in the 5%–15% of patients with 
long-standing lupus arthritis who develop deformities by a subluxation of ligaments, known 
as Jaccoud's arthropathy (33). The synovial inflammation of RA is mainly driven by M1 
macrophages and Th17 cells, and the main pathogenic mechanism of SLE is humoral immunity 
characterized by autoantibodies against nuclear and cytoplasmic antigens (34,35). This suggests 
that even if there is synovitis in both RA and SLE, the development of bone erosions depends 
on the context of inflammatory milieu determined by T cell subsets and their cytokines.

INFγ, the main Th1 cytokine, strongly suppresses OC differentiation in vitro through the 
proteosomal degradation of TRAF6 (36). It also downregulates RANKL-mediated cathepsin 
K expression in OC precursors which is critical for both differentiation and function of OCs 
(37). IL-4 as a Th2 cytokine is known to suppress OC differentiation through PPARγ and 
STAT6 activation (38,39). On the other hand, the co-culture with Th17 cells enhances OC 
differentiation through not only the action of IL-17, but also RANKL expression (11). Th17 
cytokines including IL-17, IL-21, and IL-22 is mainly responsible for the bone erosion in RA 
through direct induction of OC differentiation as well as RANKL production from FLS and 
osteoblast (11,40,41). The blocking antibody against IL-17A inhibits OC differentiation in vivo, 
which is associated with the induction of IL-12 and IL-4, and the increase of Th2 and Tregs 
(42). Another T cell subset, Tregs, suppresses OC formation. Co-culture of Tregs suppresses 
OC differentiation from OC precursors as well as their bone resorbing function in vitro (43). 
The transgenic mice of Foxp3 that is the master regulator of Tregs revealed an osteopetrotic 
phenotype by the suppression of OC (44). Treg-mediated inhibition of OC differentiation 
is largely dependent on direct cell-cell contact via the CTLA-4, whereas TGFβ and IL-10, the 
major cytokines of Tregs, did not have an essential role (43). Abatacept that is a fusion protein 
with the extracellular domain of CTLA-4 inhibited OC formation in a dose-dependent manner 
in vitro, and successfully attenuated the bone erosion in the arthritis of TNF transgenic mice 
(45). Taken together, these evidences suggest that the distribution of T cell subsets that is 
different according to inflammatory diseases can influence the cytokine milieu, and the 
net effects of T cell subsets and their cytokines can determine the differentiation of OC and 
consequently the erosive phenotype of the individual inflammatory diseases (Fig. 2).

OC DIFFERENTIATION BY ANTI-CITRULLINATED PEPTIDE 
ANTIBODY (ACPA)
Citrullination is the post-translational modification of the amino acid arginine with positive 
charge at a neutral pH into the citrulline with neutral charge by peptidylarginine deiminase 
(PAD) enzyme in a calcium-dependent manner (46,47). The citrullinated target proteins 
such as filaggrin and vimentin lose their positive charge that was maintained by arginine, 
and consequently induce conformational changes of proteins (47). Arginine is essentially 
incapable of anchoring within the first binding pocket of all HLA-DR proteins because of its 
charge and relatively large size (48). Whereas the citrullinated peptides can have preferential 
but weak binding to HLA-DR proteins and it can make the citrullinated self-antigen-specific 
T cells escape the thymic negative selection (49,50). These CD4+ T cells actively contribute 
to the production of ACPA which is highly specific for the RA (46,47). Mounting evidences 
suggest the mucosal site such as lung and gingiva can be responsible for the initial ACPA 
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production which is associated with long-term exposure to cigarette smoking and chronic 
periodontitis by Porphyromonas gingivalis (51,52).

RA is chronic inflammatory disorder characterized by periarticular bone erosion that is associated 
with disease severity and poor functional outcome (53). Recent evidences found that ACPA is 
involved in the development of RA as well as bone erosion through OC differentiation (54,55). 
Even the subjects with ACPA who have no clinical symptom of RA, namely preclinical RA, showed 
a reduced bone mineral density which was mainly by cortical bone thinning and porosity, and a 
higher incidence of erosions in metacarpophalangeal joints compared to ACPA-negative controls 
(56). This result suggests that ACPA alone can trigger OC activation even in the absence of active 
inflammation. OCs and OC precursors express not only vimentin in their cytoplasm, but also 
PAD2 and PAD4 enzymes, which is unique for OCs and OC precursors, but not other cells in 
the joint tissue (55,57,58). Treatment of ACPA against mutated citrullinated vimentin (MCV) not 
only bound to osteoclast surfaces, but also led to robust induction of in vitro OC differentiation 
and bone-resorptive activity (54). This enhanced OC differentiation was reproduced in adoptive 
transfer model of MCV-ACPA in vivo, resulting in osteopenic phenotype (54). ACPA-mediated 
enhancement of OC differentiation was blocked by PAD enzyme inhibitor in a dose-dependent 
manner (55). Collectively, these evidences suggest that the vimentin is citrullinated by PAD 
enzyme in OCs and OC precursors, and this citrullinated vimentin expressed on the cell surface 
allows ACPA to bind to OC, which promotes OC differentiation and activation (Fig. 3).

Although the precise signaling mechanisms are not well known, the binding of ACPA to the 
citrullinated vimentin on OC surface triggers the production of IL-8, also known as CXCL8 
(55,58). ACPA-mediated OC differentiation is completely abolished by IL-8 neutralization or 
its chemical inhibitor, suggesting that IL-8 acts as an autocrine growth factor for OCs in the 
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Figure 2. Osteoclastogenesis is carefully orchestrated by various cytokines and immune cells in RA environment. 
FLS produces RANKL and TNFα which is induced by inflammation milieu, and macrophages are the main source 
of inflammatory cytokines such as TNFα, IL-1β, and IL-6 which can induce OC differentiation. B cells mainly 
express RANKL in RA synovium. In terms of T cell subset, Th17 cells increase OC differentiation through RANKL 
and IL-17 production, while Treg, Th1, and Th2 cells suppress it.
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presence of ACPA (55). In addition, IL-8 as a potent chemokine can recruit neutrophils to the 
joint tissue. These activated neutrophils release neutrophil extracellular traps (NETs) consisted 
of processed chromatin bound to granular and selected cytoplasmic proteins (59). NETs 
can not only be a huge source of citrullinated antoantigen, but also stimulate inflammatory 
response through cytokine release, and activation of FLS and macrophage in RA (60).

Collectively, the osteoclast differentiation normally controlled by osteoblast- or osteocyte-
secreted RANKL can be amplified under inflammatory condition of RA. The osteoclast-
mediated bone destruction in RA is finely regulated not only by immune cells such as T cells, B 
cells and macrophages, and their cytokines, but also by FLS and RA-specific antibody of ACPA.

INNATE IMMUNE SYSTEM AND OC DIFFERENTIATION

Gout, along with RA, is another inflammatory arthritis characterized by bone erosion, which 
is caused by precipitation of monosodium urate (MSU) crystal in the joint (61). MSU crystal 
as a damage-associated molecular patterns (DAMPs) triggers innate immune response 
through pattern recognition receptors, such as nucleotide oligomerization domain (NOD)-
like receptors and Toll-like receptors (TLRs), which implicates a role of innate immune 
system in OC differentiation (61,62).

MSU crystals phagocytosed by macrophages are recognized by the NOD leucine rich repeat 
with a pyrin domain 3 (NLRP3) inflammasome involving the activation of procaspase-1, 
which in turn cleaves proIL-1β to active IL-1β (61). Actually, MSU-mediated enhancement 
of OC differentiation is significantly attenuated by the knockdown of IL-1β (63). NLRP3-
induced activation of procaspase-1 can also trigger the cleavage of ADP-ribosyltransferase 
diphtheria toxin-like 1 (ARTD1), also known as poly(ADP-ribose) polymerase 1 (PARP1), into 
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89 kDa- and 24 kDa-sized fragments, leading to the loss of its enzyme function (64). This 
inhibition of ARTD1 results in the activation of canonical NF-κB signaling, which enhances 
the expression of IL-1β and NFATc1 in OC precursors (65). In addition, the OC-specific 
gain-of-function mutation of NLRP3 increases osteolysis in vivo resulting in 50% lower bone 
mass without systemic inflammation compared to control mice which is responsible for 
the enhanced reorganization of actin cytoskeleton (66). This result suggests a direct role of 
NLRP3 inflammasome in the function of mature OCs (Fig. 4).

OC precursors also express TLRs, especially TLR2 and TLR4 (67). Although the ligands 
for TLR2 and TLR4 induces NF-κB activation and up-regulates TNFα expression in OC 
precursors, it strongly inhibits the OC differentiation in vitro (67). It is explained by the TLR-
mediated suppression of RANK and TRME-2 expression through down-regulating cell surface 
c-Fms, the receptor for M-CSF, in OC precursors (68). However, OC precursors from TLR-
2- and TLR-4-deficient mice have impaired capacity to uptake MSU crystals and differentiate 
to OC, implicating the indirect enhancement of OC differentiation by MSU crystal in the 
perspective of TLRs (69).

CONCLUDING REMARKS

Studies published over the past decade have found extensive evidences on the control of OC 
differentiation by immune cells and their cytokines (Fig. 2). Bone erosion and joint damage 
can proceed even though there is no evidence of active joint inflammation with effective 
medication for RA, so called uncoupling between clinical synovitis and damage progression 
(6,70). Recently, the antibody for RANKL, denosumab, has been known to be effective 
for reducing bone erosion, while it failed to show any difference in almost all parameters 
of disease activity compared with the placebo group (71). Moreover, there is an emerging 
interest in the enhancement of systemic bone loss in inflammatory diseases (72). Given the 
close interplay between the immune cells and OCs in inflammatory milieu, it is considered 
ideal the treatment strategy with agents that not only target the inflammation but also 
suppress OC differentiation, and this approach could potentially have significant impact on 
the future direction of drug development (Table 1).
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Table 1. Critical mechanism-related implications and future directions for a new research agenda in bone erosion of inflammatory arthritis
Critical mechanisms Implications discussed in this paper Research agenda and future therapeutic targets
Enhanced expression of RANKL and 
OSCAR in inflammatory arthritis

RANKL is expressed in B cells, Th17 cells and FLS in 
RA synovium.

Inhibition of OSCAR and TREM-2 signaling in the progression of  
bone erosion.

Cytokine-stimulated monocytes express a higher 
level of OSCAR in RA.

Cathepsin K inhibitor in the prevention of bone erosion in RA.
The pathologic role of TREM-2 in bone destruction in RA.
Other cellular source of RANKL in inflammatory arthritis  
such as Th22 cells etc.

Inflammatory cytokines and OC 
differentiation

The combination of inflammatory cytokines 
such as TNFα/IL-1β or TNFα/IL-6 can induce OC 
differentiation even if without RANKL.

Role of inflammatory cytokines in osteoblast activation which 
affects OC differentiation through RANKL expression.
Therapeutic effect of JAK inhibitors in bone erosion of RA  
(the comparison with TNFα/IL-6 inhibitors).

T-cell-mediated regulation of OC 
differentiation

Th17 cells induce OC differentiation through IL-17 and 
RANKL production.

Role of Th9, Th22 and Tr1 subsets in OC differentiation.

The molecular mechanism for non-destructive phenotype in lupus 
arthritis (why is the lupus arthritis resistant to bone erosion?).

Bone production mechanism in spondyloarthropathy (over-activation 
of osteoblast by OC in the perspective of OC-OB coupling).

Th1/INFγ, Th2/IL-4, Treg/CTLA-4 suppress OC 
differentiation.
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