References
- Agarwal, S., Godbole, S., Punjani, D., and Roy, S. (2007). How much noise is too much: A study in automatic text classification, In Seventh IEEE International Conference on Data Mining, 3-12.
- Alpaydin, E., and Jordan, M. I. (1996). Local linear perceptrons for classification. IEEE Transactions on Neural Networks, 7(3), 788-794. https://doi.org/10.1109/72.501737
- Ando, R. K., and Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov), 1817-1853.
- Angelova, R., and Weikum, G. (2006). Graph-based text classification: Learn from your neighbors, In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, 485-492.
- Aslam, S. (2018). Twitter by the numbers: Stats, demographics and fun facts. [Online]. Retrieved from https://www.omnicoreagency.com/twitter-statistics/
- Bennett, K. P., and Demiriz, A. (1999). Semi-supervised support vector machines. In Advances in Neural Information Processing Systems, 368-374.
- Beyer, M. A., and Laney, D. (2012). The importance of 'big data': A definition. Gartner Research, Stamford, CT, USA, Tech. Rep. G00235055.
- Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022.
- Blum, A., and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual ACM conference on Computational learning theory, 92-100.
- Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/BF00058655
- Bruce, R. (2001). Semi-supervised learning using prior probabilities and EM. In International Joint Conference on Artificial Intelligence, Workshop on Text Learning: Beyond Supervision.
- Chapelle, O., Chi, M., and Zien, A. (2006a). A continuation method for semi-supervised SVMs. In Proceedings of the 23rd ACM International Conference on Machine Learning, 185-192.
- Chapelle, O., Scholkopf, B., and Zien, A. (2006b). Semi-supervised learning. MIT Press, Cambridge, MA.
- Cozman, F. G., Cohen, I., and Cirelo, M. C. (2003). Semi-supervised learning of mixture models. In Proceedings of the 20th International Conference on Machine Learning, 99-106.
- Dasarathy, B. V., and Sheela, B. V. (1979). A composite classifier system design: Concepts and methodology. In Proceedings of the IEEE, 67(5), 708-713. https://doi.org/10.1109/PROC.1979.11321
- Dimitriadou, E., Weingessel, A., and Hornik, K. (2003). A Cluster Ensembles Framework. IOS Press, Amsterdam, The Netherlands.
- Freund, Y., and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, 148-156.
- Freund, Y., and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504
- Giacinto, G., and Roli, F. (2001). An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters, 22(1), 25-33. https://doi.org/10.1016/S0167-8655(00)00096-9
- Grandvalet, Y., and Bengio, Y. (2005). Semi-supervised learning by entropy minimization. In Advances in Neural Information Processing Systems, 529-536.
- Hansen, L. K., and Salamon, P., (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993-1001. https://doi.org/10.1109/34.58871
- Hartley, H. O., and Rao, J. N. (1968). Classification and estimation in analysis of variance problems. Revue de l'Institut International de Statistique, 141-147.
- Hernandez, M. A., and Stolfo, S. J. (1998). Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 2(1), 9-37. https://doi.org/10.1023/A:1009761603038
- Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine learning, 42(1-2), 177-196. https://doi.org/10.1023/A:1007617005950
- Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural Computation, 3(1), 79-87. https://doi.org/10.1162/neco.1991.3.1.79
- Jordan, M. I., and Xu, L. (1995). Convergence results for the EM approach to mixtures of experts architectures. Neural Networks, 8(9), 1409-1431. https://doi.org/10.1016/0893-6080(95)00014-3
- Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with noise in defect prediction. In IEEE 33rd International Conference on Software Engineering, 481-490.
- Kuncheva, L. I., Bezdek, J. C., and Duin, R. P. (2001). Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognition, 34(2), 299-314. https://doi.org/10.1016/S0031-3203(99)00223-X
- L'Heureux, A., Grolinger, K., ElYamany, H. F., and Capretz, M. (2017). Machine learning with big data: Challenges and approaches. IEEE Access.
- Li, M., and Zhou, Z. H. (2005). SETRED: Self-training with editing. In PAKDD, 3518, 611-621.
- Liu, W., Liu, S., Gu, Q., Chen, X., and Chen, D. (2015). Fecs: A cluster based feature selection method for software fault prediction with noises. In IEEE 39th Annual Computer Software and Applications Conference (COMPSAC), 2, 276-281.
- Mallapragada, P. K., Jin, R., Jain, A. K., and Liu, Y. (2009). Semiboost: Boosting for semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2000-2014. https://doi.org/10.1109/TPAMI.2008.235
- Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D. (2014). The stanford coreNLP natural language processing toolkit. In ACL (System Demonstrations), 55-60.
- Maulik, U., and Chakraborty, D. (2011). A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery. Pattern Recognition, 44(3), 615-623. https://doi.org/10.1016/j.patcog.2010.09.021
- Mitra, V., Wang, C. J., and Banerjee, S. (2007). Text classification: A least square support vector machine approach. Applied Soft Computing, 7(3), 908-914. https://doi.org/10.1016/j.asoc.2006.04.002
- Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3), 103-134. https://doi.org/10.1023/A:1007692713085
- Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(30), 21-45. https://doi.org/10.1109/MCAS.2006.1688199
- Provost, F., and Fawcett, T. (2013). Data science for business: What you need to know about data mining and data-analytic thinking. O'Reilly Media, Inc..
- Riloff, E., Wiebe, J., and Phillips, W. (2005). Exploiting subjectivity classification to improve information extraction. In Proceedings of the National Conference on Artificial Intelligence, 20(3), 1106.
- Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised self-training of object detection models. In Seventh IEEE Workshops on Application of Computer Vision, 1, 29-36.
- Saez, J. A., Galar, M., Luengo, J., and Herrera, F. (2013). Tackling the problem of classification with noisy data using Multiple Classifier Systems: Analysis of the performance and robustness. Information Sciences, 247, 1-20. https://doi.org/10.1016/j.ins.2013.06.002
- Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227. https://doi.org/10.1007/BF00116037
- Seeger, M. (2000). Learning with labeled and unlabeled data. Tech. Rep. Edinburgh, UK: University of Edinburgh.
- Tanha, J., van Someren, M., and Afsarmanesh, H. (2011). Disagreement-based co-training. In 23rd IEEE International Conference on Tools with Artificial Intelligence, 803-810.
- Tanha, J., van Someren, M., and Afsarmanesh, H. (2017). Semi-supervised self-training for decision tree classifiers. International Journal of Machine Learning and Cybernetics, 8(1), 355-370. https://doi.org/10.1007/s13042-015-0328-7
- Triguero, I., Garcia, S., and Herrera, F. (2015). Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study. Knowledge and Information Systems, 42(2), 245-284. https://doi.org/10.1007/s10115-013-0706-y
- Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley, Reading, Mass.
- Wang, G., Hao, J., Ma, J., and Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications, 38(1), 223-230. https://doi.org/10.1016/j.eswa.2010.06.048
- Wang, L., Chan, K. L., and Zhang, Z. (2003). Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval. In CVPR, 629-634.
- Wang, X. Z., Zhang, S. F., and Zhai, J. H. (2007). A nonlinear integral defined on partition and its application to decision trees. Soft Computing, 11(4), 317-321. https://doi.org/10.1007/s00500-006-0083-5
- Wang, Y., Xu, X., Zhao, H., and Hua, Z. (2010). Semi-supervised learning based on nearest neighbor rule and cut edges. Knowledge-Based Systems, 23(6), 547-554. https://doi.org/10.1016/j.knosys.2010.03.012
- Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
- Woods, K., Kegelmeyer, W. P., and Bowyer, K. (1997). Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 405-410. https://doi.org/10.1109/34.588027
- Wu, X. (1996). Knowledge acquisition from databases. Ablex Publishing Corp., Norwood, NJ, USA.
- Wu, X., and Zhu, X. (2008). Mining with noise knowledge: error-aware data mining. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(4), 917-932. https://doi.org/10.1109/TSMCA.2008.923034
- Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, 189-196.
- Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms. CRC press.
- Zhu, X., and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 3(1), 1-130. https://doi.org/10.1007/978-3-031-01548-9
- Zhu, X., Lafferty, J., and Rosenfeld, R. (2005). Semi-supervised learning with graphs. Doctoral dissertation. School of Computer Science, Language Technologies Institute, Carnegie Mellon University.
- Zhu, X., Wu, X., and Chen, Q. (2003). Eliminating class noise in large datasets. In Proceedings of the 20th International Conference on Machine Learning, 920-927.