Acknowledgement
Supported by : Korea Environment Industry & Technology Institute (KEITI)
References
-
Ahmadi, M., Ghanbari, F., Alvarez, A. and Martinez, S.S. (2017), "UV-LEDs assisted peroxymonosulfate/
$Fe^{2+}$ for oxidative removal of carmoisine: The effect of chloride ion", Korean J. Chem. Eng., 34(8), 2154-2161. https://doi.org/10.1007/s11814-017-0122-1. - Anipsitakis, G.P. and Dionysiou, D.D. (2003), "Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt", Environ. Sci. Technol., 37(20), 4790-4797. https://doi.org/10.1021/es0263792
- Anipsitakis, G.P. and Dionysiou, D.D. (2004), "Radical generation by the interaction of transition metals with common oxidants", Environ. Sci. Technol., 38(13), 3705-3712. http://doi.org/10.1021/es035121o.
- Anipsitakis, G.P., Tufano, T.P. and Dionysiou, D.D. (2008), "Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate", Water Res., 42(12), 2899-2910. https://doi.org/10.1016/j.watres.2008.03.002.
- Baziar, M., Nabizadeh, R., Mahvi, A.H., Alimohammadi, M., Naddafi, K., Mesdaghinia, A. and Aslani, H. (2018), "Effect of dissolved oxygen/nZVI/persulfate process on the elimination of 4-chlorophenol from aqueous solution: Modeling and optimization study", Korean J. Chem. Eng., 35(5), 1128-1136. https://doi.org/10.1007/s11814-018-0017-9.
- Cho, M., Lee, Y., Choi, W., Chung, H.M. and Yoon, J. (2006), "Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli", Water Res., 40(19), 3580-3586. https://doi.org/10.1016/j.watres.2006.05.043.
- Cho, M., Kim, J., Kim, J.Y., Yoon, J. and Kim, J.H. (2010), "Mechanisms of Escherichia coli inactivation by several disinfectants", Water Res., 44(11), 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017.
- Delcomyn, C.A., Bushway, K.E. and Henley, M.V. (2006), "Inactivation of biological agents using neutral oxone-chloride solutions", Environ. Sci. Technol., 40(8), 2759-2764. http://doi.org/10.1021/es052146.
-
Ding, Y., Zhu, L., Wang, N. and Tang, H. (2013), "Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic
$CuFe_{2}O_{4}$ as a heterogeneous catalyst of peroxymonosulfate", Appl. Catal. B-Environ., 129, 153-162. https://doi.org/10.1016/j.apcatb.2012.09.015. - Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E. (2005), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, USA.
-
Gilbert, B.C. and Stell, J.K. (1990), "Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (
$HOOSO_3{^-}$ ) with Ti, Fe, and$\alpha$ -oxygen-substituted radicals", J. Chem. Soc., Perkin Trans., 2(8), 1281-1288. http://doi.org/10.1039/P29900001281. - Gomes, A., Fernandes, E. and Lima, J.L.F.C. (2005), "Fluorescence probes used for detection of reactive oxygen species", J. Biochem. Bioph. Meth., 65(2-3), 45-80. https://doi.org/10.1016/j.jbbm.2005.10.003.
- Hoff, J.C. and Geldreich, E.E. (1981), "Comparison of the biocidal efficiency of alternative disinfectants", J. Am. Water Works Ass., 73(1), 40-44. https://doi.org/10.1002/j.1551-8833.1981.tb04636.x.
- Huh, J.H. and Ahn, J.W. (2017), "A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development", Environ. Eng. Res., 22(1), 1-11. https://doi.org/10.4491/eer.2016.155.
- Ike, I.A., Linden, K.G., Orbell, J.D. and Duke, M. (2018), "Critical review of the science and sustainability of persulphate advanced oxidation processes", Chem. Eng. J., 338, 651-669. https://doi.org/10.1016/j.cej.2018.01.034.
- Jang, J., Jang, M., Mui, W., Delcomyn, C.A., Henley, M.V. and Hearn, J.D. (2010), "Formation of active chlorine oxidants in saline-oxone aerosol", Aerosol Sci. Technol., 44(11), 1018-1026. https://doi.org/10.1080/02786826.2010.507612.
- Ji, F., Li, C. and Deng, L. (2011), "Performance of CuO/Oxone system: Heterogeneous catalytic oxidation of phenol at ambient conditions", Chem. Eng. J., 178, 239-243. https://doi.org/10.1016/j.cej.2011.10.059.
- Kim, H.E., Nguyen, T.T.M., Lee, H. and Lee, C. (2015), "Enhanced inactivation of Escherichia coli and MS2 coliphage by cupric ion in the presence of hydroxylamine: Dual microbicidal effects", Environ. Sci. Technol., 49(24), 14416-14423. http://doi.org/10.1021/acs.est.5b04310.
- Kumar, P.S., Raj, R.M., Rani, S.K. and Easwaramoorthy, D. (2012), "Reaction kinetics and mechanism of copper(II) catalyzed oxidative deamination and decarboxylation of ornithine by peroxomonosulfate", Ind. Eng. Chem. Res., 51(18), 6310-6319. http://doi.org/10.1021/ie202409p.
- Lee, C., Kim, H.H. and Park, N.B. (2018), "Chemistry of persulfates for the oxidation of organic contaminants in water", Membr. Water Treat., 9(6), 405-419. https://doi.org/10.12989/mwt.2018.9.6.405.
- Lee, H.J., Kim, H.E. and Lee, C. (2017), "Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes", Water Res., 110, 83-90. https://doi.org/10.1016/j.watres.2016.12.014.
- Lente, G., Kalmar, J., Baranyai, Z., Kun, A., Kek, I., Bajusz, D., Takacs, M., Veres, L. and Fabian, I. (2009), "One- versus twoelectron oxidation with peroxomonosulfate ion: Reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(III)", Inorg. Chem., 48(4), 1763-1773. http://doi.org/10.1021/ic801569k.
- Nguyen, T.T.M., Park, H.J., Kim, J.Y., Kim, H.E., Lee, H., Yoon, J. and Lee, C. (2013), "Microbial inactivation by cupric ion in combination with H2O2: Role of reactive oxidants", Environ. Sci. Technol., 47(23), 13661-13667. http://doi.org/10.1021/es403155a.
- Park, H.J., Nguyen, T.T.M., Yoon, J. and Lee, C. (2012), "Role of reactive oxygen species in Escherichia coli inactivation by cupric ion", Environ. Sci. Technol., 46(20), 11299-11304. http://doi.org/10.1021/es302379q.
- Rastogi, A., Al-Abed, S.R. and Dionysiou, D.D. (2009), "Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems", Appl. Catal. B-Environ., 85(3-4), 171-179. https://doi.org/10.1016/j.apcatb.2008.07.010.
- Smith, R.C. and Reed, V.D. (1992), "Inhibition by thiols of copper(II)-induced oxidation of oxyhemoglobin", Chem. Biol. Interact., 82(2), 209-217. https://doi.org/10.1016/0009-2797(92)90111-W.
- von Gunten, U. (2003), "Ozonation of drinking water: Part I. Oxidation kinetics and product formation", Water Res., 37(7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8.
- von Gunten, U., (2003), "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine", Water Res., 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X.
- Wallace, W.H., Bushway, K.E., Miller, S.D., Delcomyn, C.A., Renard, J.J. and Henley, M.V. (2005), "Use of in situ-generated dimethyldioxirane for inactivation of biological agents", Environ. Sci. Technol., 39(16), 6288-6292. http://doi.org/10.1021/es0501969.
- Wood, P., Jones, M., Bhakoo, M. and Gilbert, P. (1996), "A novel strategy for control of microbial biofilms through generation of biocide at the biofilm-surface interface", Appl. Environ. Microbiol. 62(7), 2598-2602. https://doi.org/10.1128/AEM.62.7.2598-2602.1996
- Wong, M.K., Chan, T.C., Chan, W.Y. Chan, W.K., Vrijmoed, L.L.P., O'Toole, D.K. and Che, C.M. (2006), "Dioxiranes generated in situ from pyruvates and oxone as environmentally friendly oxidizing agents for disinfection", Environ. Sci. Technol., 40(2), 625-630. https://doi.org/10.1021/es050688l.
- Zhang, Z. and Edwards, J.O. (1992), "Chain lengths in the decomposition of peroxomonosulfate catalyzed by cobalt and vanadium. Rate law for catalysis by vanadium", Inorg. Chem., 31(17), 3514-3517. https://doi.org/10.1021/ic00043a007.