DOI QR코드

DOI QR Code

Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water

  • Kim, Hyung-Eun (Center for Water Resource Cycle Research, KIST School, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Hye-Jin (Department of Chemical Engineering, McMaster University) ;
  • Kim, Min Sik (School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University) ;
  • Choi, Joon-Young (Hyorim Industries Inc.) ;
  • Lee, Changha (School of Chemical and Biological Engineering, Institute of Engineering Research, Seoul National University)
  • Received : 2018.10.01
  • Accepted : 2019.04.01
  • Published : 2019.05.25

Abstract

Peroxymonosulfate (PMS) in combination with Cu(II) was examined to inactivate E. coli and MS2 coliphage in natural water. The combined system (i.e., the Cu(II)/PMS system) caused a synergistic inactivation of E. coli and MS2, in contrast with either Cu(II) or PMS alone. Increasing the concentration of PMS enhanced the inactivation of E. coli and MS2, but after a certain point, it decreased the efficacy of the microbial inactivation. In the Cu(II)/PMS system, adding reactive oxidant scavengers marginally affected the E. coli inactivation, but the inhibitory effects of copper-chelating agents were significant. Fluorescent assays indicated that the Cu(II)/PMS system greatly increased the level of reactive oxidants inside the E. coli cells. The sequential addition of Cu(II) and PMS inactivated more E. coli than did adding the two simultaneously; in particular, the inactivation efficacy was much higher when Cu(II) was added first. The observations from the study collectively showed that the microbial inactivation by the Cu(II)/PMS system could be attributed to the toxicity of Cu(I) as well as the intracellular oxidative stress induced by Cu(III) or radical species.

Keywords

Acknowledgement

Supported by : Korea Environment Industry & Technology Institute (KEITI)

References

  1. Ahmadi, M., Ghanbari, F., Alvarez, A. and Martinez, S.S. (2017), "UV-LEDs assisted peroxymonosulfate/$Fe^{2+}$ for oxidative removal of carmoisine: The effect of chloride ion", Korean J. Chem. Eng., 34(8), 2154-2161. https://doi.org/10.1007/s11814-017-0122-1.
  2. Anipsitakis, G.P. and Dionysiou, D.D. (2003), "Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt", Environ. Sci. Technol., 37(20), 4790-4797. https://doi.org/10.1021/es0263792
  3. Anipsitakis, G.P. and Dionysiou, D.D. (2004), "Radical generation by the interaction of transition metals with common oxidants", Environ. Sci. Technol., 38(13), 3705-3712. http://doi.org/10.1021/es035121o.
  4. Anipsitakis, G.P., Tufano, T.P. and Dionysiou, D.D. (2008), "Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate", Water Res., 42(12), 2899-2910. https://doi.org/10.1016/j.watres.2008.03.002.
  5. Baziar, M., Nabizadeh, R., Mahvi, A.H., Alimohammadi, M., Naddafi, K., Mesdaghinia, A. and Aslani, H. (2018), "Effect of dissolved oxygen/nZVI/persulfate process on the elimination of 4-chlorophenol from aqueous solution: Modeling and optimization study", Korean J. Chem. Eng., 35(5), 1128-1136. https://doi.org/10.1007/s11814-018-0017-9.
  6. Cho, M., Lee, Y., Choi, W., Chung, H.M. and Yoon, J. (2006), "Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli", Water Res., 40(19), 3580-3586. https://doi.org/10.1016/j.watres.2006.05.043.
  7. Cho, M., Kim, J., Kim, J.Y., Yoon, J. and Kim, J.H. (2010), "Mechanisms of Escherichia coli inactivation by several disinfectants", Water Res., 44(11), 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017.
  8. Delcomyn, C.A., Bushway, K.E. and Henley, M.V. (2006), "Inactivation of biological agents using neutral oxone-chloride solutions", Environ. Sci. Technol., 40(8), 2759-2764. http://doi.org/10.1021/es052146.
  9. Ding, Y., Zhu, L., Wang, N. and Tang, H. (2013), "Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic $CuFe_{2}O_{4}$ as a heterogeneous catalyst of peroxymonosulfate", Appl. Catal. B-Environ., 129, 153-162. https://doi.org/10.1016/j.apcatb.2012.09.015.
  10. Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E. (2005), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, USA.
  11. Gilbert, B.C. and Stell, J.K. (1990), "Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion ($HOOSO_3{^-}$) with Ti, Fe, and $\alpha$-oxygen-substituted radicals", J. Chem. Soc., Perkin Trans., 2(8), 1281-1288. http://doi.org/10.1039/P29900001281.
  12. Gomes, A., Fernandes, E. and Lima, J.L.F.C. (2005), "Fluorescence probes used for detection of reactive oxygen species", J. Biochem. Bioph. Meth., 65(2-3), 45-80. https://doi.org/10.1016/j.jbbm.2005.10.003.
  13. Hoff, J.C. and Geldreich, E.E. (1981), "Comparison of the biocidal efficiency of alternative disinfectants", J. Am. Water Works Ass., 73(1), 40-44. https://doi.org/10.1002/j.1551-8833.1981.tb04636.x.
  14. Huh, J.H. and Ahn, J.W. (2017), "A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development", Environ. Eng. Res., 22(1), 1-11. https://doi.org/10.4491/eer.2016.155.
  15. Ike, I.A., Linden, K.G., Orbell, J.D. and Duke, M. (2018), "Critical review of the science and sustainability of persulphate advanced oxidation processes", Chem. Eng. J., 338, 651-669. https://doi.org/10.1016/j.cej.2018.01.034.
  16. Jang, J., Jang, M., Mui, W., Delcomyn, C.A., Henley, M.V. and Hearn, J.D. (2010), "Formation of active chlorine oxidants in saline-oxone aerosol", Aerosol Sci. Technol., 44(11), 1018-1026. https://doi.org/10.1080/02786826.2010.507612.
  17. Ji, F., Li, C. and Deng, L. (2011), "Performance of CuO/Oxone system: Heterogeneous catalytic oxidation of phenol at ambient conditions", Chem. Eng. J., 178, 239-243. https://doi.org/10.1016/j.cej.2011.10.059.
  18. Kim, H.E., Nguyen, T.T.M., Lee, H. and Lee, C. (2015), "Enhanced inactivation of Escherichia coli and MS2 coliphage by cupric ion in the presence of hydroxylamine: Dual microbicidal effects", Environ. Sci. Technol., 49(24), 14416-14423. http://doi.org/10.1021/acs.est.5b04310.
  19. Kumar, P.S., Raj, R.M., Rani, S.K. and Easwaramoorthy, D. (2012), "Reaction kinetics and mechanism of copper(II) catalyzed oxidative deamination and decarboxylation of ornithine by peroxomonosulfate", Ind. Eng. Chem. Res., 51(18), 6310-6319. http://doi.org/10.1021/ie202409p.
  20. Lee, C., Kim, H.H. and Park, N.B. (2018), "Chemistry of persulfates for the oxidation of organic contaminants in water", Membr. Water Treat., 9(6), 405-419. https://doi.org/10.12989/mwt.2018.9.6.405.
  21. Lee, H.J., Kim, H.E. and Lee, C. (2017), "Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes", Water Res., 110, 83-90. https://doi.org/10.1016/j.watres.2016.12.014.
  22. Lente, G., Kalmar, J., Baranyai, Z., Kun, A., Kek, I., Bajusz, D., Takacs, M., Veres, L. and Fabian, I. (2009), "One- versus twoelectron oxidation with peroxomonosulfate ion: Reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(III)", Inorg. Chem., 48(4), 1763-1773. http://doi.org/10.1021/ic801569k.
  23. Nguyen, T.T.M., Park, H.J., Kim, J.Y., Kim, H.E., Lee, H., Yoon, J. and Lee, C. (2013), "Microbial inactivation by cupric ion in combination with H2O2: Role of reactive oxidants", Environ. Sci. Technol., 47(23), 13661-13667. http://doi.org/10.1021/es403155a.
  24. Park, H.J., Nguyen, T.T.M., Yoon, J. and Lee, C. (2012), "Role of reactive oxygen species in Escherichia coli inactivation by cupric ion", Environ. Sci. Technol., 46(20), 11299-11304. http://doi.org/10.1021/es302379q.
  25. Rastogi, A., Al-Abed, S.R. and Dionysiou, D.D. (2009), "Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems", Appl. Catal. B-Environ., 85(3-4), 171-179. https://doi.org/10.1016/j.apcatb.2008.07.010.
  26. Smith, R.C. and Reed, V.D. (1992), "Inhibition by thiols of copper(II)-induced oxidation of oxyhemoglobin", Chem. Biol. Interact., 82(2), 209-217. https://doi.org/10.1016/0009-2797(92)90111-W.
  27. von Gunten, U. (2003), "Ozonation of drinking water: Part I. Oxidation kinetics and product formation", Water Res., 37(7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8.
  28. von Gunten, U., (2003), "Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine", Water Res., 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X.
  29. Wallace, W.H., Bushway, K.E., Miller, S.D., Delcomyn, C.A., Renard, J.J. and Henley, M.V. (2005), "Use of in situ-generated dimethyldioxirane for inactivation of biological agents", Environ. Sci. Technol., 39(16), 6288-6292. http://doi.org/10.1021/es0501969.
  30. Wood, P., Jones, M., Bhakoo, M. and Gilbert, P. (1996), "A novel strategy for control of microbial biofilms through generation of biocide at the biofilm-surface interface", Appl. Environ. Microbiol. 62(7), 2598-2602. https://doi.org/10.1128/AEM.62.7.2598-2602.1996
  31. Wong, M.K., Chan, T.C., Chan, W.Y. Chan, W.K., Vrijmoed, L.L.P., O'Toole, D.K. and Che, C.M. (2006), "Dioxiranes generated in situ from pyruvates and oxone as environmentally friendly oxidizing agents for disinfection", Environ. Sci. Technol., 40(2), 625-630. https://doi.org/10.1021/es050688l.
  32. Zhang, Z. and Edwards, J.O. (1992), "Chain lengths in the decomposition of peroxomonosulfate catalyzed by cobalt and vanadium. Rate law for catalysis by vanadium", Inorg. Chem., 31(17), 3514-3517. https://doi.org/10.1021/ic00043a007.