DOI QR코드

DOI QR Code

Nutrient removal from secondary effluent using filamentous algae in raceway ponds

  • Min, Kyung-Jin (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Lee, Jongkeun (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Cha, Ho-Young (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Park, Ki Young (Department of Civil and Environmental Engineering, Konkuk University)
  • Received : 2018.10.01
  • Accepted : 2018.12.28
  • Published : 2019.05.25

Abstract

In this study, we investigated the cultivation possibility using Hydrodictyon reticulatum in a continuous raceway pond as a tertiary sewage treatment plant. The cultivation possibility was evaluated by varying the light quantity, wavelength, and hydraulic retention time (HRT). Experimental results showed that the growth rates of algae and the removal efficiencies of nutrients increased as the light quantity increased, and the maximum photosynthetic rate was maintained at $100{\mu}mol/m^2{\cdot}s$ or higher. When wavelength was varied, nutrient removal efficiency and growth rate increased in the following order: green light, red light, white light, and blue light. The nutrient removal efficiencies and algae productivity in HRT 4 d were better than in HRT 8 d. We conclude that if Hydrodictyon reticulatum is cultivated in a raceway pond and used as a tertiary treatment facility in a sewage treatment plant, nutrients can be effectively removed, and production costs can be reduced.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. Atta, M., Idris, A., Bukhari, A. and Wahidin, S. (2013), "Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris", Bioresour. Technol., 148, 373-378. https://doi.org/10.1016/j.biortech.2013.08.162
  2. Boonchai, R., Seo, G.T., Park, D.R. and Seong, C.Y. (2012), "Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant", Int. J. Biosci. Biochem. Bioinforma., 2(6), 407-410. https://doi.org/10.7763/ijbbb.2012.v2.143
  3. Carvalho, A.P., Silva, S.O., Baptista, J.M. and Malcata, F.X. (2011), "Light requirements in microalgal photobioreactors: an overview of biophotonic aspects", Appl. Microbiol. Biotechnol., 89(5), 1275-1288. https://doi.org/10.1007/s00253-010-3047-8
  4. Chan, A., Salsali, H. and McBean, E. (2013), "Nutrient removal (nitrogen and phosphorous) in secondary effluent from a wastewater treatment plant by microalgae", Can. J. Civ. Eng., 41(2), 118-124. https://doi.org/10.1139/cjce-2013-0405
  5. Choi, H.J., Lee, J.M. and Lee, S.M. (2013), "A novel optical panel photobiorector for cultivation of microalgae", Water Sci. Technol., 67(11), 2543-2548. https://doi.org/10.2166/wst.2013.128
  6. Craggs, R.J., Heubeck, S., Lundquist, T.J. and Benemann, J.R. (2011), "Algal biofuels from wastewater treatment high rate algal ponds", Water Sci. Technol., 63(4), 660-665. https://doi.org/10.2166/wst.2011.100
  7. Gabriel, J. and Sanchez-Saavedra, M.D.P. (2001), "Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions", J. Shellfish Res., 20(2), 603-610.
  8. Haag, A.L. (2007), "Algae Bloom Again", Nature, 447(7144), 520-521. https://doi.org/10.1038/447520a
  9. Hall, J. and Payne, G. (1997), "Factors controlling the growth of field populations of Hydrodictyon reticulatum in New Zealand", J. Appl. Phycol., 9(3), 229-236. https://doi.org/10.1023/A:1007988412729
  10. Hawes, I. and Smith, R. (1993), "Influence of environmental factors on the growth in culture of a New Zealand strain of the fast-spreading alga Hydrodictyon reticulatum (water-net)", J. Appl. Phycol., 5(4), 437-445. https://doi.org/10.1007/BF02182736
  11. Hsieh, C.H. and Wu, W.T. (2009), "A Novel Photpbioreactor with Transparent Rectangular Chambers for Cultivation of Microalgae", Biochem. Eng. J., 46(3), 300-305. https://doi.org/10.1016/j.bej.2009.06.004
  12. Hyenstrand, P., Rydin, E. and Gunnerhed, M. (2000), "Response of pelagic cyanobacteria to iron additions-enclosure experiments from Lake Erken", J. Plankton Res., 22, 1113-1126. https://doi.org/10.1093/plankt/22.6.1113
  13. Kim, D., Min, K.J., Lee, K., Yu, M.S. and Park, K.Y. (2017), "Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater", Environ. Eng. Res., 22(1), 12-18. https://doi.org/10.4491/eer.2016.037
  14. Kim, T.H., Lee, Y., Han, S.H. and Hwang, S.J. (2013), "The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment", Bioresour. Technol., 130, 75-80. https://doi.org/10.1016/j.biortech.2012.11.134
  15. Lee, J., Lee, K., Jang, H.M., Shin, J., Park, K.Y., Cho, J. and Kim Y.M. (2017a), "Biomethanation and anaerobic co-digestion via microbial communities of microalgal Hydrodictyon reticulatum biomass residues with sewage sludge", Desalination Water Treat., 77, 185-193. https://doi.org/10.5004/dwt.2017.20685
  16. Lee, K., Chantrasakdakul, P., Kim, D., Kong, M. and Park, K.Y. (2014), "Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production", Waste Manag., 34(6), 1035-1040. https://doi.org/10.1016/j.wasman.2013.10.012
  17. Lee, K., Chantrasakdakul, P., Kim, D., Kim, J.S. and Park. K.Y. (2017b), "Biogas productivity of algal residues from bioethanol production", J. Mater. Cycles Waste Manag., 19(1), 235-240. https://doi.org/10.1007/s10163-015-0413-8
  18. Li, X., Hu, H., Gan, K. and Yang, J. (2010), "Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources", Ecol. Eng., 36, 379-381. https://doi.org/10.1016/j.ecoleng.2009.11.003
  19. Martinez, M.E., Sanchez, S., Jimenez, J.M., El Yousfi, F. and Munoz, L. (2000), "Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus", Bioresour. Technol., 73(3), 263-272. https://doi.org/10.1016/S0960-8524(99)00121-2
  20. Mercado, J.M., Sanchez, P., Carmona, R. and Niell, F.X. (2002), "Limited acclimation of photosynthesis to blue light in the seaweed Gracilaria tenuistipitata", Physiol. Plant., 114(3), 491-498. https://doi.org/10.1034/j.1399-3054.2002.1140319.x
  21. Nelson, N.B. and Prezelin, B.B. (1990), "Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (= Glenodinium sp.)", Mar. Ecol. Prog. Ser., 37-46.
  22. Nguyen, C.M., Kim, J.S., Hwang, H.J., Park, M.S., Choi, G.J., Choi, Y.H., Jang, K.S. and Kim, J.C. (2012), "Production of Llactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli", Bioresour. Technol., 110, 552-559. https://doi.org/10.1016/j.biortech.2012.01.079
  23. Nishikawa, T. (2001), "Measuring the growth rate of the harmful diatom Eucampia zodiacus by in vivo chlorophuyll fluorescence", Bull. Hygo. Prefect. Fish. Exp. Stn., 36, 21-23.
  24. Park, J.B.K. and Craggs, R.J. (2010), "Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition", Water Sci. Technol., 61(3), 633-639. https://doi.org/10.2166/wst.2010.951
  25. Park, J.B.K. and Craggs, R.J. (2011), "Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition", Water Sci. Technol., 63(8), 1758-1764. https://doi.org/10.2166/wst.2011.114
  26. Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011), "Wastewater treatment high rate algal ponds for biofuel production", Bioresour. Technol. 102(1), 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
  27. Park, K.Y., Kweon, J., Chantrasakdakul, P., Lee, K. and Cha, H.Y. (2013), "Anaerobic digestion of microalgal biomass with ultrasonic disintegration", Int. Biodeterior. Biodegradation, 85, 598-602. https://doi.org/10.1016/j.ibiod.2013.03.035
  28. Park, K.Y., Lim, B.R. and Lee, K. (2009), "Growth of microalgae in diluted process water of the animal wastewater treatment plant", Water Sci. Technol., 59(11), 2111-2116. https://doi.org/10.2166/wst.2009.233
  29. Perez-Garcia, O., Escalante, F.M.E., De-Bashan, L.E. and Bashan, Y. (2011), "Heterotrophic culture of microalgae: Metabolism and potential products", Water Res., 45(1), 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  30. Raven, J.A., Smith, F.A. and Glidewell, S.M. (1979), "Photosynthetic capabilities and biological strategies of giantcelled and small-celled macro-algae", New Phytol., 83, 299-309. https://doi.org/10.1111/j.1469-8137.1979.tb07455.x
  31. Richmond, A. (2004), "Principles for attaining maximal microalgal productivity in photobioreactors: An overview", Hydrobiologia, 512, 33-37. https://doi.org/10.1023/B:HYDR.0000020365.06145.36
  32. Su, Y., Mennerich, A. and Urban, B. (2012), "Comparison of nutrient removal capacity and biomass settleability of four highpotential microalgal species", Bioresour. Technol., 124, 157-162. https://doi.org/10.1016/j.biortech.2012.08.037
  33. Su, Y., Mennerich, A. and Urban, B. (2011), "Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture", Water Res., 45, 3351-3358. https://doi.org/10.1016/j.watres.2011.03.046
  34. Tas, B. (2011), "Bloom and eutrophication of Hydrodictyon reticulatum (Chlorophyceae) at Civil and Kacali Stream, Ordu, Turkey", Ener. Educ. Sci. Tech-A., 28(1), 319-330.
  35. Teo, C.L., Atta, M., Bukhari, A., Taisir, M., Yusuf, A.M. and Idris, A. (2014), "Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths", Bioresour. Technol., 162, 38-44. https://doi.org/10.1016/j.biortech.2014.03.113
  36. Tremblin, G., Cannuel, R., Mouget, J.L., Rech, M.O. and Robert, J.M. (2000), "Change in light quality due to a blue-green pigment, marennine, released in oyster-ponds: Effect on growth and photosynthesis in two diatoms, Haslea ostrearia and Skeletonema costatum", J. Appl. Phycol., 12(6), 557-566. https://doi.org/10.1023/A:1026502713075
  37. Wijffels, R.H. and Barbosa, M.J. (2010), "An Outlook on Microalgal Biofuels", Science, 329(5993), 796-799. https://doi.org/10.1126/science.1189003
  38. Wilkie, A.C. and Mulbry, W.W. (2002), "Recovery of dairy manure nutrients by benthic freshwater algae", Bioresour. Technol., 84(1), 81-91. https://doi.org/10.1016/S0960-8524(02)00003-2
  39. Zhang, Y., Safa, N.J. and Angelidaki, I. (2011), "Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC)", Energy Environ. Sci., 4, 4340-4346. https://doi.org/10.1039/c1ee02089g