Fig. 1. GPR Exploration path
Fig. 2. GPR Sample Image
Fig. 3. Faster R-CNN Process
Fig. 4. Faster R-CNN 13-Layer Structure
Fig. 5. Faster R-CNN Learning Process
Fig. 6. Data set A
Fig. 7. Data set B
Fig. 8. Data set C
Fig. 9. Data set A verification image example
Fig. 10. Data set B verification image example
Fig. 11. Data set C verification image example
Fig. 12. Graph result with augmentation applied
Table 1. Experiment Environment
Table 2. Experiment result symbol meaning
Table 3. Experiment result
Table 4. Result with augmentation applied
References
- D. Daniels. (2004). Ground penetrating rader. The Institution of Engineering and Technology Publishing.
- D. Y. Lee. (2018). Analysis of sewer pipe defect and ground subsidence risk by using CCTV and GPR monitering results. Journal of Korean Geosynthetics Society, 17(3), 47-55. DOI : 10.12814/jkgss.2018.17.3.047
- M. G. Huici. (2013). Accurate ground penetrating radar numerical modeling for automatic detection and recognition of antipersonnel landmines. Doctoral dissertation. Rheinischen Friedrich Wilhelms Universitat Bonn, Bonn.
- Q. Dou, L. Wei, D. R. Magee & A. G. Cohn. (2017). Real-time hyperbola recognition and fitting in GPR data. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 51-62. DOI : 10.1109/TGRS.2016.2592679
- M. C. Lee, H. C. Shin & J. H. Yoon. (2011). A study on the ground following and location marking method for mine detection system. Journal of the Korea Institute of Military Science and Technology, 14(6), 1002-1008. DOI : 10.9766/KIMST.2011.14.6.1002
- R. Girshick, J. Donahue, T. Darrell & J. Malik. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587). DOI : 10.1109/CVPR.2014.81
- R. Girshick. (2015, Sep). Fast R-CNN. 2015 International Conference on Computer Vision (pp. 1440-1448). DOI : 10.1109/ICCV.2015.169
- S. Ren, K. He, R. Girshick & J. Sun. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. DOI : 10.1109/TPAMI.2016.2577031
- S. J. Shin, J. K. Park, Y. Y. Kim, J. H. Jang & I. C. Moon. (2017). Analsys of the effect of convolutional neural network model on training and prediction in Faster R-CNN. Journal of Korean Institute of Industrial Engineers, 1-5.
- K. Simonyan & A. Zisserman. (2015, Apr). Very deep convolutional networks for large-scale image recognition. Proceedings of International Conference on Learning Representations (pp. 1-14).
- C. J. Kim, S. K. Ko, B. E. Kim, H. D. Jung & C. S. Cho. (2018). Object detection based on data augmentation using image rotation. Journal of Institute of Electronics and Information Engineers, 545-548.