DOI QR코드

DOI QR Code

On Multipliers of Lattice Implication Algebras for Hierarchical Convergence Models

계층적 융합모델을 위한 격자함의 대수의 멀티플라이어

  • Kim, Kyoum-Sun (Department of Mathematics, Chungbuk National University) ;
  • Jeong, Yoon-Su (Division of Information and Communication Convergence Engineering, Mokwon University) ;
  • Yon, Yong-Ho (College of Liberal Education, Mokwon University)
  • 김겸순 (충북대학교 수학과) ;
  • 정윤수 (목원대학교 정보통신융합공학부) ;
  • 연용호 (목원대학교 교양교육원)
  • Received : 2019.03.06
  • Accepted : 2019.05.20
  • Published : 2019.05.28

Abstract

Role-based access or attribute-based access control in cloud environment or big data environment need requires a suitable mathematical structure to represent a hierarchical model. This paper define the notion of multipliers and simple multipliers of lattice implication algebras that can implement a hierarchical model of role-based or attribute-based access control, and prove every multiplier is simple multiplier. Also we research the relationship between multipliers and homomorphisms of a lattice implication algebra L, and prove that the lattice [0, u] is isomorphic to a lattice $[u^{\prime},1]$ for each $u{\in}L$ and that L is isomorphic to $[u,1]{\times}[u^{\prime},1]$ as lattice implication algebras for each $u{\in}L$ satisfying $u{\vee}u^{\prime}=1$.

클라우드 환경이나 빅데이터 환경에서의 역할기반 또는 속성기반의 접근제어에는 계층적 모델을 표현하는 적당한 수학적 구조가 필요하다. 본 논문에서는 역할기반 또는 속성기반의 접근제어의 계층적 모델을 구현할 수 있는 격자함의 대수에서 멀티플라이어와 단순 멀티플라이어의 개념을 정의하고, 모든 멀티플라이어는 단순 멀티플라이어임을 증명한다. 또한 격자함의대수 L의 멀티플라이어와 준동형사상의 관계를 조사하고, 각각의 $u{\in}L$에 대하여 격자 [0, u]와 격자 $[u^{\prime},1]$이 동치임과 $u{\vee}u^{\prime}=1$$u{\in}L$에 대하여 L과 $[u,1]{\times}[u^{\prime},1]$이 격자함의대수로써 동치임을 보인다.

Keywords

JKOHBZ_2019_v9n5_7_f0001.png 이미지

Fig. 1. Hasse diagram of (A, •)

Table 1. Cayley table of binary operation • on L  

JKOHBZ_2019_v9n5_7_t0001.png 이미지

References

  1. Y. Xu. (1993). Lattice implication algebras, J. Southwest Jiaotong Univ., 1, 20-27.
  2. Y. B. Jun, E. H. Roh & Y. Xu. (1998). LI-ideals in lattice implication algebras, Bull. Korean Math. Soc., 35(1), 13-23.
  3. Y. B. Jun, Y. Xu & X. Zhang. (2016). Int-soft filters in lattice implication algebras, Bull. Korean Math. Soc. 53(5), 1483-1495. DOI : 10.4134/BKMS.b150781
  4. E. H. Roh, S. Y. Kim, Y. Xu & Y. B. Jun. (2001). Some operations on lattice implication algebras, Int. J. Math. Math. Sci., 27(1), 45-52. DOI : 10.1155/S0161171201006214
  5. Y. Xu & K. Y. Qin. (1992). Lattice H implication algebras and lattice implication algebra classes, J. Hebei Mining and Civil Eng. Inst., 3, 139-143.
  6. Y. Xu & K. Y. Qin. (1993). On filters of lattice implication algebras, J. Fuzzy Math., 1(2), 251-260.
  7. B. Jayarama & R. Mesiar. (2009). On special fuzzy implications, Fuzzy Sets and Systems, 160, 2063-2085. DOI : 10.1016/j.fss.2008.11.004
  8. S. O. Kuznetsov. (2001). Machine Learning on the Basis of Formal Concept Analysis, Autom. Remote Control, 62(10), 1543-1564. DOI : 10.1023/A:1012435612567
  9. J. Wei, W. Liu & X. Hu. (2018). Secure and Efficient Attribute-Based Access Control for Multiauthority Cloud Storage, IEEE Systems Journal, 12(2), 1731-1742. DOI : 10.1109/JSYST.2016.2633559
  10. Y. Zhu, D. Huang, C. J. Hu & X. Wang. (2015). From RBAC to ABAC: Constructing Flexible Data Access Control for Cloud Storage Services, IEEE Trans. Services Computing, 8(4), 601-616. DOI : 10.1109/TSC.2014.2363474
  11. Y. H. Yon. (2015). On quasi-lattice implication algebras, J. Appl. Math. & Informatics, 33(5-6), 739-748. DOI : 10.14317/jami.2015.739
  12. R. Larsen. (1971). An Introduction to the Theory of Multipliers, Berlin : Springer-Verlag.
  13. J. Cirulis. (1986). Multipliers in implicative algebras, Bull. Sect. Logic Univ. Lodz, 15(4), 152-157.
  14. Y. H. Yon & K. H. Kim. (2010). On expansive linear maps and-multipliers of lattices, Quaest. Math., 33, 417-427. DOI : 10.2989/16073606.2010.541605
  15. Y. H. Yon & K. H. Kim. (2011). Multipliers in subtraction algebras, Sci. Math. Jpn., e-2011, 37-43.
  16. O. Altindag, S. Ayar Özbal & Y. H. Yon. (2017). On Symmetric Bi-Derivations of Lattice Implication Algebras, GU J. Sci., 30(1), 431-441.
  17. S. D. Lee & K. H. Kim. (2013). On Derivations of Lattice Implication Algebra, Ars Combin., 108, 279-288. DOI : 10.1142/9789814417747_0124
  18. Y. H. Yon & K. H. Kim. (2013). On f-derivations of lattice implication algebras, Ars Combin., 110, 205-215.
  19. H. Zhu, J. Zhao, W. Xu & Y. Xu. (2012). On derivations of lattice implication algebras. In: The 10th international FLINS conference river edge, World Science Press, (pp. 775-780). DOI : 10.1142/9789814417747_0124