DOI QR코드

DOI QR Code

Comparative study of the resistance of bonded, riveted and hybrid assemblies; Experimental and numerical analyses

  • Ezzine, M.C. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Madani, K. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Tarfaoui, M. (ENSTA Bretagne, MSN/LBMS/DFMS) ;
  • Touzain, S. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, University of La Rochelle) ;
  • Mallarino, S. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, University of La Rochelle)
  • Received : 2017.09.07
  • Accepted : 2019.03.02
  • Published : 2019.05.25

Abstract

The objective of this work is to analyze by traction tests, the mechanical behavior of an assembly of type metal / metal by various assembly processes; bonding, riveting and hybrid, on the one hand to show the advantage of a hybrid assembly with respect to the other processes, and on the other hand, to analyze by the finite element method the distribution of the stresses in the various components of the structure and to demonstrate the effectiveness of the use of a hybrid assembly with respect to other processes. The number of rivets has been considered. The results show clearly that the value of the different stresses is reduced in the case of a hybrid junction and that the number of rivets in an assembly can be reduced by using a hybrid joint.

Keywords

References

  1. Abe, Y., Kato, T. and Mori, K. (2009), "Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die", J. Mater. Process. Technol., 209(8), 3914-3922. https://doi.org/10.1016/j.jmatprotec.2008.09.007.
  2. Adams, R.D. (2005), "Adhesive bonding: science", Technol. Appl., Woodhead Publishing Ltd., Bristol, United Kingdom.
  3. Chakhari, J., Daidie, A., Chaib, Z. and Guillot, J. (2008), "Numerical model for two-bolted joints subjected to compressive loading", Finite Elem. Anal. Des, 44(4), 162-173. https://doi.org/10.1016/j.finel.2007.11.010.
  4. Cooper, P.A. and Sawyer, J.W. (1979), "A critical examination of stresses in an elastic single lap joint", TP-1507; NASA.
  5. D'Aniello, M., Portioli F., Fiorino, L. and Landolfo, R. (2011), "Experimental investigation on shear capacity of riveted connections in steel structures", Eng. Struct., 33(2), 516-531. https://doi.org/10.1016/j.engstruct.2010.11.010.
  6. Da Silva, L.F.M. and Ochsner, A. (2008), Modeling of Adhesive Bonded Joints, Springer, Berlin, Germany.
  7. Elhannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X, and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint". Struct. Eng. Mech., 59(2), 313-326. http://doi.org/10.12989/sem.2016.59.2.313.
  8. Goland, M. and Reissner, E.J. (1944), "The stress in cemented joints", J. Appl. Mech. Tranc. Am. Soc. Mech. Eng., 66, A17-A27. https://doi.org/10.1115/1.4009336
  9. Goland, M., Buffalo, N.Y. and Reissner, E. (1944), "The stresses in cemented joints: Transaction of ASME", Appl. Mech., 66, A17-A27.
  10. Gomez, S., Onoro, J. and Pecharroman, J. (2007), "A simple mechanical model of a structural hybrid adhesive/riveted single lap joint", Adhes. Adhes., 27, 263-267. https://doi.org/10.1016/j.ijadhadh.2006.01.004
  11. Guo, X., Zewei, H., Xiong, Z., Yang, S. and Peng, L. (2016), "Numerical studies on behaviour of bolted ball-cylinder joint under axial force", Steel Compos. Struct., 20(6), https://doi.org/10.12989/scs.2016.20.6.1323.
  12. Harris, J.A. and Adams, R.D. (1984), "Strength prediction of bonded single lap joints by nonlinear finite element methods", Adhes. Adhes., 4(2), 65. https://doi.org/10.1016/0143-7496(84)90103-9.
  13. Hart-Smith, L.J. (1973), "Adhesive bonded double lap joints", NASA-CR-112237; McDonnell-Douglas Corp., Long Beach, CA, USA.
  14. Karachalios, E.F., Adams, R.D. and da Silva, L.F.M. (2013), "Single lap joints loaded in tension with high strength steel adherends", Adhes. Adhes., 43, 81-95. https://doi.org/10.1016/j.ijadhadh.2013.01.016.
  15. Kelly, G. (2006), "Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints", Compos. Struct., 72(1), 119-129. https://doi.org/10.1016/j.compstruct.2004.11.002.
  16. Leconte, N. and Langrand, B. (2009), "Hybrid displacement FE formulations including a hole", Struct. Eng. Mech., 31(4), 439-451. https://doi.org/10.12989/sem.2009.31.4.439
  17. Lees, W.A. (1985), "Stress distribution in bonded joints: An exploration within a mathematical model", Mater. Des., 6(3), 117-123. https://doi.org/10.1016/0261-3069(85)90054-8.
  18. Leitermann, W. and Christlein, J. (2000), "The 2nd generation Audi space frame of the A2: A trendsetting all-aluminium car body concept in a compact class car", Seoul 2000 FISITA World Automotive Congress, Seoul, Korea, June.
  19. Levente, K. and Laszlo, D. (2015), "Experimental study on standard and innovative bolted end-plate beam-to-beam joints under bending", Steel Compos. Struct., 18(6), 1423-1450. http://doi.org/10.12989/scs.2015.18.6.1423.
  20. Lopez-Arancibia, A., Altuna-Zugasti, A.M., Aldasoro, H.A. and Pradera-Mallabiabarrena, A. (2015), "Bolted joints for singlelayer structures: Numerical analysis of the bending behavior", Struct. Eng. Mech., 56(3), 355-367. https://doi.org/10.12989/sem.2015.56.3.355.
  21. Matthews, F.L., Kilty, P.F. and Goodwin, E.W. (1982), "A review of the strength of joints in fibre reinforced plastics: Part 2 Adhesively bonded joints", Compos., 13(1), 29-37. https://doi.org/10.1016/0010-4361(82)90168-9.
  22. Mokhtari, M., Madani, K., Belhouari, M., Touzain, S., Feaugas, X. and Ratwani, M. (2013), "Effects of composite adherend properties on stresses in double lap bonded joints", Mater. Design, 44, 633-639. https://doi.org/10.1016/j.matdes.2012.08.001.
  23. Osnes, H. and McGeorge, D. (2009), "Experimental and analytical strength analysis of double lap joints for marine application", Compos. B, 40, 29-40. https://doi.org/10.1016/j.compositesb.2008.07.002.
  24. Oztekin, E. (2015), "Reliabilities of distances describing bolt placement for high strength steel connections", Struct. Eng. Mech., 54(1), https://doi.org/10.12989/sem.2015.54.1.149.
  25. Paroissien, E., Sartor, M., Huet, J. and Lachaud, F. (2007), "Analytical two-dimensional model of a hybrid (bolted-bonded) single-lap joint", J. Aircraft, 44, 573-582. https://doi.org/10.2514/1.24452.
  26. Pirondi, A. and Moroni, F. (2009), "An investigation of fatigue failure prediction of adhesively bonded metal/metal joints", J. Adhes. Sci.Technol., 29(8), 796-805. https://doi.org/10.1016/j.ijadhadh.2009.06.003.
  27. Reid, J.D. and Hiser, N.R. (2005), "Detailed modeling of bolted joints with slippage", Finite Elem. Anal. Des., 41(6), 547-562. https://doi.org/10.1016/j.finel.2004.10.001
  28. Rezgani, L., Madani, K., Mokhtari, M., Feaugas, X., Cohendoz, S., Touzain, S. and Mallarino, S. (2017), "Hygrothermal ageing effect of ADEKIT A140 adhesive on the J-integral of a plate repaired by composite patch", J. Adhes. Sci. Technol., 32, 1393-1409. https://doi.org/10.1080/01694243.2017.1415790.
  29. Solmaz, M.Y. and Topkaya, T. (2013), "Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints", J Adhes., 89, 822-836. https://doi.org/10.1080/00218464.2013.765800.
  30. Thrall, Jr. and Edward, W. (1977), "Primary adhesively bonded structure technology (PABST)", J. Aircraft, 14(6), 588-594. https://doi.org/10.2514/3.58825.
  31. Thrall, Jr. and Edward, W. (1979), "PABST program test results", Adhes., 22(10), 22-33.
  32. Tong, L. (1994), "Bond shear strength for adhesive bonded double-lap joints", Solids Structure, 31, 2919-2931. https://doi.org/10.1016/0020-7683(94)90059-0.
  33. Tsai, M.Y. and Morton, J. (1994), "An evaluation of analytical and numerical solutions to the single-lap joint", Solids Struct., 31, 2537. https://doi.org/10.1016/0020-7683(94)90036-1
  34. Vinson, J.R. (1989), "Adhesive bonding of polymer composites". Polym. Eng. Sci., 29(19), 1325-1331. https://doi.org/10.1002/pen.760291904.
  35. Volkersen, O. (1938), "Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit Konstanten Laschenquerschnitten", Luftfahrtforschung, 15, 41-47.
  36. White, M. (2006), "Aluminum & the automotive industry, Jaguar and Land Rover lightweight vehicle strategy", 21st International Aluminium Conference, Moscow, September.
  37. Wooley, G.R. and Carver, D.R. (1971), "Stress concentration factors for bonded lap joints", J. Aircraft, 817. https://doi.org/10.2514/3.44305.
  38. Zhang, F., Wang, H.P., Hicks, C., Yang, X., Carlson, B., Zhou, Q. (2013), "Experimental study of initial strengths and hygrothermal degradation of adhesive joints between thin aluminum and steel substrates", Adhes. Adhes., 43, 14-25. https://doi.org/10.1016/j.ijadhadh.2013.01.001
  39. Zhang, Fan., Wang, Hui-Ping, Hicks, C., Yang, Xin, Carlson, B.E and Zhou, Q. (2013), "Experimental study of initial strengths and hygrothermal degradation of adhesive joints between thin aluminum and steel substrates", Adhes. Adhes., 43, 14-25. https://doi.org/10.1016/j.ijadhadh.2013.01.001.