Acknowledgement
Supported by : Seoul National University
References
- Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B. and Fnaiech, F. (2015), "Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals", Appl. Acoust., 89, 16-27. https://doi.org/10.1016/j.apacoust.2014.08.016.
- Allemang, R.J. (2003), "The modal assurance criterion-twenty years of use and abuse", Sound Vib., 37(8), 14-23.
- Bakhary, N., Hao, H. and Deeks, A.J. (2010), "Structure damage detection using neural network with multi-stage substructuring", Adv. Struct. Eng., 13(1), 95-110. https://doi.org/10.1260/1369-4332.13.1.95
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput. Aided Civ. Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
- Chang, M. (2018), "Application studies on structural modal identification toolsuite for seismic response of shear frame structure", J. Earthq. Eng. Soc. Korea, 22(3), 201-210. https://doi.org/10.5000/EESK.2018.22.3.201
- Chang, M., Maguire, M. and Sun, Y. (2017), "Framework for mitigating human bias in selection of explanatory variables for bridge deterioration modeling", J. Infrastruct. Sys., 23(3), 04017002. https://doi.org/10.5000/EESK.2018.22.3.201.
- Chang, M. and Pakzad, S.N. (2014), "Observer Kalman filter identification for output-only systems using interactive structural modal identification toolsuite", J. Bridge Eng., 19(5), 04014002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000530.
- Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Health monitoring of civil infrastructure", Struct. Health Monit., 2(3), 257-267. https://doi.org/10.1177/1475921703036169.
- Chen, J.D. and Loh, C.H. (2018), "Two-stage damage detection algorithms of structure using modal parameters identified from recursive subspace identification", Earthq. Eng. Struct. Dyn., 47(3), 573-593. https://doi.org/10.1002/eqe.2980.
- Cho, H.N., Choi, Y.M., Lee, S.C., and Hur, C.K. (2004), "Damage assessment of cable stayed bridge using probabilistic neural network", Struct. Eng. Mech., 17(3-4), 483-492. http://doi.org/10.12989/sem.2004.17.3_4.483.
- Cornwell, P., Doebling, S.W. and Farrar, C.R. (1999), "Application of the strain energy damage detection method to plate like structures", J Sound Vib., 224(2), 359-374. https://doi.org/10.1006/jsvi.1999.2163.
- Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011.
- Dorvash, S. and Pakzad, S.N. (2012), "Effects of measurement noise on modal parameter identification", Smart Mater. Struct., 21(6), 065008. https://doi.org/10.1088/0964-1726/21/6/065008.
- Farreras-Alcover, I., Chryssanthopoulos, M.K. and Andersen, J.E. (2015), "Regression models for structural health monitoring of welded bridge joints based on temperature, traffic and strain measurements", Struct. Health Monit., 14(6), 648-662. https://doi.org/10.1177%2F1475921715609801. https://doi.org/10.1177%2F1475921715609801
- Hakim, S.J.S., Noorzaei, J., Jaafar, M.S., Jameel, M. and Mohammadhassani, M. (2011), "Application of artificial neural networks to predict compressive strength of high strength concrete", Int. J. Phys. Sci., 6(5), 975-981. https://doi.org/10.5897/IJPS11.023.
- Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Sys., 14(2), 159-189. http://dx.doi.org/10.12989/sss.2014.14.2.159.
- Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm for modal parameter identification and model reduction", J. Guid., Control, Dyn., 8(5), 620-627. https://doi.org/10.2514/3.20031.
- Ko, J.M., Sun, Z.G. and Ni, Y.Q. (2002), "Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge", Eng. Struct., 24(7), 857-868. https://doi.org/10.1016/S0141-0296(02)00024-X.
- Kondo, I. and Hamamoto, T. (1994), "Local damage detection of flexible offshore platforms using ambient vibration measurement", Int. Soc. Offshore Polar Eng., 4, 400-407.
- Lam, H.F., Ko, J.M. and Wong, C.W. (1998), "Localization of damaged structural connections based on experimental modal and sensitivity analysis", J. Sound Vib., 210(1), 91-115. https://doi.org/10.1006/jsvi.1997.1302.
- Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280(3-5), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Levin, R.I. and Lieven, N.A.J. (1998), "Dynamic finite element model updating using neural networks", J. Sound Vib., 210(5), 593-607. https://doi.org/10.1006/jsvi.1997.1364.
- Limongelli, M.P. (2010), "Frequency response function interpolation for damage detection under changing environment", Mech. Sys. Signal Process., 24(8), 2898-2913. https://doi.org/10.1016/j.ymssp.2010.03.004.
- Magalhaes, F., Cunha, A. and Caetano, E. (2012), "Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection", Mech. Sys. Signal Process., 28, 212-228. https://doi.org/10.1016/j.ymssp.2011.06.011.
- Maguire, M., Roberts-Wollmann, C. and Cousins, T. (2018), "Live-load testing and long-term monitoring of the Varina-Enon Bridge: Investigating thermal distress", J. Bridg. Eng., 23(3), 04018003. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001200.
- Majumdar, A., De, A., Maity, D. and Maiti, D.K. (2013), "Damage assessment of beams from changes in natural frequencies using ant colony optimization", Struct. Eng. Mech., 45(3), 391-410. https://doi.org/10.12989/sem.2013.45.3.391.
- Nguyen, V.H., Schommer, S., Maas, S. and Zurbes, A. (2016), "Static load testing with temperature compensation for structural health monitoring of bridges", Eng. Struct., 127, 700-718. https://doi.org/10.1016/j.engstruct.2016.09.018.
- Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B.
- Park, J.H., Kim, J.T., Hong, D.S., Ho, D.D. and Yi, J.H. (2009), "Sequential damage detection approaches for beams using timemodal features and artificial neural networks", J. Sound Vib., 323(1-2), 451-474. https://doi.org/10.1016/j.jsv.2008.12.023.
- Qu, W.L., Chen, W., and Xiao, Y.Q. (2003), "A two-step approach for joint damage diagnosis of framed structures using artificial neural networks", Struct. Eng. Mech., 16(5), 581-595. http://doi.org/10.12989/sem.2003.16.5.581.
- Radzienski, M., Krawczuk, M. and Palacz, M. (2011), "Improvement of damage detection methods based on experimental modal parameters", Mech. Sys. Signal Process., 25(6), 2169-2190. https://doi.org/10.1016/j.ymssp.2011.01.007.
- Ratcliffe, C.P. (1997), "Damage detection using a modified Laplacian operator on mode shape data", J. Sound Vib., 204(3), 505-517. https://doi.org/10.1006/jsvi.1997.0961.
- Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6.
- Shahidi, S.G. and Pakzad, S.N. (2013), "Generalized response surface model updating using time domain data", J. Struct. Eng., 140(8), A4014001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000915.
- Sohn, H. (2007), "Effects of environmental and operational variability on structural health monitoring", Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci., 365(1851), 539-560. https://doi.org/10.1098/rsta.2006.1935.
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R. and Czarnecki, J.J. (2003), "A review of structural health monitoring literature: 1996-2001", LA-UR-02-2095; Los Alamos National Laboratory, USA.
- Torres, V., Zolghadri, N., Maguire, M., Barr, P. and Halling, M. (2018), "Experimental and analytical investigation of live-load distribution factors for double tee bridges", J. Perform. Constr. Facil., 33(1), 04018107. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001259.
- Van Ooyen, A. and Nienhuis, B. (1992), "Improving the convergence of the back-propagation algorithm", Neural Netw., 5(3), 465-471. https://doi.org/10.1016/0893-6080(92)90008-7.
- Worden, K. and Manson, G. (2006), "The application of machine learning to structural health monitoring", Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci., 365(1851), 515-537. https://doi.org/10.1098/rsta.2006.1938.
- Wu, X., Ghaboussi, J. and Garrett Jr, J.H. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J.
- Yazdanpanah, O., Seyedpoor, S.M., and Akbarzadeh Bengar, H. (2015). "A new damage detection indicator for beams based on mode shape data", Struct. Eng. Mech., 53(4), 725-744. http://doi.org/10.12989/sem.2015.53.4.725.
- Yoon, M.K., Heider, D., Gillespie Jr, J.W., Ratcliffe, C.P. and Crane, R.M. (2005), "Local damage detection using the twodimensional gapped smoothing method", J Sound Vib., 279(1-2), 119-139. https://doi.org/10.1016/j.jsv.2003.10.058.
- Yun, C.B., Yi, J.H. and Bahng, E.Y. (2001), "Joint damage assessment of framed structures using a neural networks technique", Eng. Struct., 23(5), 425-435. https://doi.org/10.1016/S0141-0296(00)00067-5.
- Zeiger, H.P. and McEwen, A. (1974), "Approximate linear realizations of given dimension via Ho's algorithm", IEEE Trans. on Autom. Control, 19(2), 153-153. http://doi.org/https://doi.org/10.1109/TAC.1974.1100525.
- Zolghadri, N., Halling, M.W. and Barr, P.J. (2016), "Effects of temperature variations on structural vibration properties", Geotechnical and Structural Engineering Congress 2016, 1032-1043, Phoenix, USA, February. https://doi.org/10.1061/9780784479742.087.
Cited by
- Damage identification using deep learning and long-gauge fiber Bragg grating sensors vol.59, pp.33, 2019, https://doi.org/10.1364/ao.405110