References
- Belkacem, A., Daouadji Tahar, H., Abderrezak, R., Benhenni M.A., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling Analysis of hybrid laminated composite Plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
- Backus, G. (1966), "Potentials for tangent tensor fields on spheroids", Arch. Ration. Mech. Anal., 22, 210-252. https://doi.org/10.1007/BF00266477.
- Rad, A.B., Farzan-Rad, M.R. and Majd, K.M. (2017). "Static Analysis of non-uniform heterogeneous circular Plate with porous material resting on a gradient hybrid foundation involving friction force", Struct. Eng. Mech., 64(5), 591-610. https://doi.org/10.12989/sem.2017.64.5.591.
- Bramble, J.H. and Payne, L.E. (1962), "Some uniqueness theorems in the theory of elasticity", Arch. Ration. Mech. Anal. 9, 319-328. https://doi.org/10.1007/BF00253354.
- Capaldi, F.M. (2012), Continuum Mechanics: Constitutive Modeling of Structural and Biological Materials, Cambridge University Press, New York, U.S.A.
- Cauchy, A. (1900), Oeuvres completes d'Augustin Cauchy, Serie 2, Tome 1, Gauthier-Villars fils, 381-411.
- Einstein, A. and Minkowski, H. (1920), "The foundation of the generalised theory of relativity", The University of Calcutta, 89-163.
- Euler, L. (1766), "De motu vibratorio tympanorum", Novi. Comment. Acad. Sci. Petropol., 10, 243-260.
- Foppl, A. (1900), "Vorlesungen uber Technische Mechanik", Teubner, Leipzig, Germany.
- Germain, S. (1821), "Recherches sur la theorie des surfaces elastiques", Mme. Ve. Courcier, Paris, France.
- Germain, S. (1826), "Remarques sur la nature, les bornes et l'etendue de la question des surfaces elastiques et equation generale de ces surfaces", Huzard-Courcier, Paris, France.
- Gray, M. (1978), "Sophie Germain (1776-1831)", Women of Mathmatics, Greenwood Press, Connecticut, U.S.A.
- Harutyunyan, D. (2017), "Gaussian curvature as an identifier of shell rigidity", Arch. Ration. Mech. Anal., 226, 743-766. https://doi.org/10.1007/s00205-017-1143-y.
- Kirchhoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", J. fur die Reine und Angew Math., 51-88. https://doi.org/10.1515/CRELLE.2008.080
- Kirchhoff, G. (1897), Vorlesungen uber mechanic, 4th ed., Teubner, Leipzig, Germany.
- Kuhnel, W. (2015), Differential Geometry: Curves-Surfaces-Manifolds, 3rd Ed., American Mathematical Society, U.S.A.
- Kurrer, K.E. (2008), "The history of the theory of structures: From arch analysis to computational mechanics", J. Space Struct., 23(3), 193-197. http://doi.org/10.1002/9783433600160.
- Lame, G. (1866), Lecons sur la theorie mathematique de l'elasticite des corps solides, 2nd ed., Gauthier-Villars, Paris, France.
- Lisle, R.J. and Robinson, J.M. (1995), "The Mohr circle for curvature and its application to fold description", J. Struct. Geol., 17, 739-750. https://doi.org/10.1016/0191-8141(94)00089-I.
- Love, A. (1888), "The small free vibrations and deformation of a thin elastic shell", Philos. Trans. R. Soc. London, 179, 491-546. https://doi.org/10.1098/rsta.1888.0016
- Mohr, O. (1906), "Abhandlungen aus dem Gebiete der technischen Mechanik mit zahlreichen textabbildungen", Wilhelm Ernst & Sohn, Berlin, Germany.
- Murat, A. (2014), "Large deflection Analysis of point supported super-elliptical Plates", Struct. Eng. Mech., 51(2), 333-347. https://doi.org/10.12989/sem.2014.51.2.333.
- Navier, C.L.M.H. (1823), "Extrait des recherches sur la flexion des planes elastiques", Bull des Sci Societe Philomath Paris, 10, 92-102.
- Navier, C.L.M.H. (1826), "Resume des Lecons donnees a l'Ecole Royale des Ponts et Chaussees sur l'Application de la Mecanique a l'Etablissement des Constructions et des Machines", 1er partie: Lecons sur la resistance des materiaux et sur l'etablissement des constructions en terre, Firmin Didot pere et fils, Paris, France.
- Navier, C.L.M.H. (1828), "Remarques sur l'article de M. Poisson, insere dans le cahier d'aout", Annales de chimie et de physique, Landmarks II, Sci. J., 39(1), 145-151.
- Norton, J.D. (1993), "General covariance and the foundations of general relativity: Eight decades of dispute", Reports Prog. Phys., 56(7), 791. https://doi.org/10.1088/0034-4885/56/7/001
- Parry, R.H.G. (2005), Mohr Circles, Stress Paths and Geothechnics, 2nd ed., CRC Press, U.S.A.
- Poisson, S.D. (1829), "Memoire sur l'equilibre et le mouvement des corps elastique", Academie des sciences, Gauthier-Villars, Paris, France.
- Quinn, V. and Stubblefield, A. (2012), Continuum and Solid Mechanics: Concepts and Applications, http://doi.org/10.1017/CBO9781107415324.004.
- Yahia, S.A., Amar, L.H.H., Belabed, Z. and Tounsi, A. (2018), "Effect of homogenization models on stress analysis of functionally graded plates", Struct. Eng. Mech., 67(5), 527-544. https://doi.org/10.12989/sem.2018.67.5.527.
- Szilard, R. (2004), Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, John Wiley and Sons, U.S.A.
- Timoshenko, S.P. (1953), History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures, McGraw-Hill, New York, U.S.A.
- Tu, T.M., Quoc, T.H. and Long, N.V. (2017), "Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311.
- Ugural, A.C. (2010), Stresses in Beams, Plates, and Shells, CRC Press, Florida, U.S.A.
- Ugural, A.C. and Fenster, S.K. (2008), Advanced Strength and Applied Elasticity, 4th ed., Prentice Hall, U.S.A.
- Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells: Theory: Analysis, and Applications, CRC Press, Florida, U.S.A.
-
Huang, W.H. and Lin, C.C. (1998), "Negatively curved sets on surfaces of constant mean curvature in
${\mathbb{R}}$ 3 are large", Arch. Ration. Mech. Anal., 141, 105-116. https://doi.org/10.1007/s002050050074.