참고문헌
- Aghajari, S., Showkati, H. and Abedi, K. (2011), "Experimental investigation on the buckling of thin cylindrical shells with twostepwise variable thickness under external pressure", Struct. Eng. Mech., 39(6), 849-860. https://doi.org/10.12989/sem.2011.39.6.849.
- Araar, M. and Julien, J.F. (1996), "Buckling of cylindrical shells under external pressure proposition of a new shape of selfstiffened shell", Struct. Eng. Mech. 4(4), 451-460. https://doi.org/10.12989/sem.1996.4.4.451.
- Bai, X., Xu, W., Ren, H. and Li, J. (2017), "Analysis of the influence of stiffness reduction on the load carrying capacity of ring-stiffened cylindrical shell", Ocean Eng., 135, 52-62. https://doi.org/10.1016/j.oceaneng.2017.02.034.
- Bryant, A.R. (1954), "Hydrostatic pressure buckling of a ringstiffened tube", NCRE Report No. 306; Naval Construction Research Establishment, United Kingdom.
- B.S.I, PD 5500 (2003), Specification for Unfired Fusion Welded Pressure Vessels, British Standards Institution, London, United Kingdom.
- Cerik, B.C. (2015), "Ultimate strength of locally damaged steel stiffened cylinders under axial compression", Thin-Walled Struct., 95, 138-151. https://doi.org/10.1016/j.tws.2015.07.004.
- Cho, S.R., Muttaqie, T., Do, Q.T., Kim, S., Kim, S.M. and Han, D.H. (2018a), "Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure", Int. J. Nav. Archit. Ocean Eng., 10(6), 711-729. https://doi.org/10.1016/j.ijnaoe.2017.12.002.
- Cho, S.R., Muttaqie, T., Do, Q.T., So, H.Y. and Sohn, J.M. (2018b), "Ultimate strength formulation considering failure mode interactions of ring-stiffened cylinders subjected to hydrostatic pressure", Ocean Eng., 161, 242-256. https://doi.org/10.1016/j.oceaneng.2018.04.083.
- Fairbairn, W. (1858), "On the resistance of tubes to collapse", Phiolosophical Trans. R. Soc., XXI. 389-413. https://doi.org/10.1098/rspl.1857.0056.
- Frieze, P.A. (1994), "The experimental response of flat-bar stiffeners in cylinders under external pressure", Mar. Struct., 7, 213-230. https://doi.org/10.1016/0951-8339(94)90025-6.
- Graham, D. (2007), "Predicting the collapse of externally pressurised ring-stiffened cylinders using finite element analysis", Mar. Struct., 20, 202-217. https://doi.org/10.1016/j.marstruc.2007.09.002.
- ISSC (2015), "Committee III.1 ultimate strength", Proc. 19th international Ship and oddshore Structure Congress, Cascais, Portugal, September.
- Kendrick, S.B. (1977), "Shape imperfections in cylinders and spheres: their importance in design and methods of measurement", J. Strain Anal., 12(2), 117-122. https://doi.org/10.1243%2F03093247V122117. https://doi.org/10.1243%2F03093247V122117
- Kendrick, S.B. (1982), "Design for external pressure using general criteria", J. Mechanical Science, 24(4), 209-218. https://doi.org/10.1016/0020-7403(82)90075-3.
- Kirstein, A.F. and Slankard, R.C. (1956), "An experimental investigation of the shell-instability strength of a machined, ring-stiffened cylindrical shell under hydrostatic pressure (Model BR-4A)", David Taylor Model Basin, DTMB Report No. 997; Navy Department, Washington, D.C., U.S.A.
- Lunchick, M.E. (1956), "Yield failure of stiffened cylinders under hydrostatic pressure", David Taylor Model Basin, DTMB Report No. 38; Navy Department, Washington, D.C., U.S.A.
- Lunchick, M.E. and Overby, J.A. (1961), "Yield strength of machined ring-stiffened cylindrical shell under hydrostatic pressure", Exp. Mech., 178-185. https://doi.org/10.1007/BF02323888.
- MacKay, J.R., van Keulen, F. and Smith, M.J. (2011), "Quantifying the accuracy of numerical collapse predictions for the design of submarine pressure hulls", Thin-Walled Struct., 49, 145-156. https://doi.org/10.1016/j.tws.2010.08.015.
- MacKay, J.R. and Van Keulen, F. (2013). "Partial safety factor approach to the design of submarine pressure hulls using nonlinear finite element analysis", Finite Elem. Anal., 65, 1-16. https://doi.org/10.1016/j.finel.2012.10.009.
- Miller, C.D. and Kinra, R.K. (1981), "External pressure tests of ring-stiffened fabricated steel cylinders", J. Pet. Technol., 33, 2528-2538. https://doi.org/10.4043/4107-MS.
- Morandi, A.C., Faulkner, D. and Das, P.K. (1996), "Frame tripping in ring stiffened externally pressurised cylinders", Mar. Struct., 9, 585-608. https://doi.org/10.1016/0951-8339(95)00020-8.
- Morihana, H., Yamauchi, Y., Inoue, K., Nakamura, K., Takenaka, M. and Baba, K. (1990), "Research on general instability of cylindrical shells reinforced by ring-stiffeners under uniform pressure (2nd Report)", J. Soc. Nav. Arch., 168, 431-440. https://doi.org/10.2534/jjasnaoe1968.1990.168_431.
- Ross, C.T.F., Gill-Carson, A. and Little, A.P.F. (2000), "The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure", Struct. Eng. Mech., 9(1), 51-68. http://doi.org/10.12989/sem.2000.9.1.051.
- Ross, C.T.F. (1997), "Inelastic general instability of ring-stiffened circular cylinders and cones under uniform external pressure", Struct. Eng. Mech., 5(2), 193-207. http://dx.doi.org/10.12989/sem.1997.5.2.193.
- Slankard, R.C. and Nash, W.A. (1953), "Test of the elastic stability of a ring-stiffened cylindrical shell, Model BR-5 (alpha=1.705) subjected to hydrostatic pressure", David Taylor Model Basin, DTMB Report No. 822; Navy Department, Washington, D.C., U.S.A.
- Tokugawa, T. (1929), "Model experiments on the elastic stability of closed and cross-stiffened circular cylinders under uniform external pressure", Proc. World Eng. Congr., 29(651), 249-279.
- von Mises (1929), "The critical external pressure of cylindrical tubes under uniform radial and axial load", Stodolas Festschr, 418-430.
- Winderburg, D. and Trilling, C. (1934), "Collapse by Instability of thin cylindrical shells under external pressure", Trans. ASME, 11, 819-825.
- Yamamoto, Y., Homma, Y., Oshima, K., Mishiro, Y., Terada, H., Yoshikawa, T., Morihana, H., Yamauchi, Y. and Takenaka, M. (1989), "General instability of ring-stiffened cylindrical shells under external pressure", Mar. Struct., 2, 133-149. https://doi.org/10.1016/0951-8339(89)90009-9.
- Yokota, K., Nanba, N., Yamauchi, Y., Urabe, Y. and Baba, K. (1985), "Research on general instability of cylindrical shells reinforced by ring stiffeners under uniform pressure (1st Report)", J. Soc. Nav. Arch., 158, 445-458.
피인용 문헌
- A New Formulation for Predicting the Collision Damage of Steel Stiffened Cylinders Subjected to Dynamic Lateral Mass Impact vol.10, pp.11, 2019, https://doi.org/10.3390/app10113856
- Design and Analysis of Mesh Size Subjected to Wheel Rim Convergence Using Finite Element Method vol.33, 2019, https://doi.org/10.1016/j.prostr.2021.10.008
- Assessment of Designed Midship Section Structures subjected to the Hydrostatic and Hydrodynamic Loads: A Convergence Study vol.33, 2019, https://doi.org/10.1016/j.prostr.2021.10.010
- Effect of Water Flow on Underwater Wet Welded A36 Steel vol.11, pp.5, 2019, https://doi.org/10.3390/met11050682