References
- Al-Chaar, G. (2002), "Evaluating strength and stiffness of unreinforced masonry infill structures", ERDC/CERL-TR-02-1; US Army Corps of Engineers, Engineer Research and Development Center, U.S.A.
- Amato, G., Cavaleri, L., Fossetti, M. and Papia, M. (2008), "Infilled frames: Influence of vertical loads on the equivalent diagonal strut model", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Asteris, P.G. (2003), "Lateral stiffness of brick masonry infilled plane frames", J. Struct. Eng., 129(8), 1071-1079. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1071)
- Asteris, P.G. (2008), "Finite element micro-modeling of infilled frames", Electronic J. Struct. Eng., 8, 1-11.
- Asteris, P.G., Antoniou, S.T., Sophianopoulos, D.S. and Chrysostomou, C.Z. (2011), "Mathematical macromodeling of infilled frames: State of the art", J. Struct. Eng., 137(12), 1508-1517. https://doi.org/10.1016/j.engstruct.2013.08.010.
- Asteris, P.G., Chrysostomou, C.Z., Giannopoulos, I.P. and Smyrou, E. (2011), "Masonry infilled reinforced concrete frames with openings", ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Corfu, Greece, May.
- Asteris, P.G., Cavaleri, L., Trapani, F.D. and Sarhosis, V. (2016), "A macro-modelling approach for the analysis of infilled frame structures considering the effects of openings and vertical loads", Struct. Infrastruct. Eng., 12(5), 551-566. https://doi.org/10.1080/15732479.2015.1030761.
- Asteris, P.G., Giannopoulos, I.P. and Chrysostomou, C.Z. (2012), "Modeling of infilled frames with openings", Open Construct. Building Technol. J., 6(1), 81-91. https://doi.org/10.2174/1874836801206010081
- Asteris, P.G., Cotsovos, D.M., Chrysostomou, C.Z., Mohebkhah, A. and Al-Chaar, G.K. (2013), "Mathematical micromodeling of infilled frames: State of the art", Eng. Struct., 56, 1905-1921. https://doi.org/10.1016/j.engstruct.2013.08.010.
- Asteris, P.G., Cavaleri, L., Di Trapani, F. and Tsaris, A.K. (2017), "Numerical modelling of out-of-plane response of infilled frames: State of the art and future challenges for the equivalent strut macromodels", Eng. Struct., 132, 110-122. https://doi.org/10.1016/j.engstruct.2016.10.012.
- ATC (1999), Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings: Basic Procedures Manual, FEMA-306, Applied Technology Council, California, U.S.A.
- Cavaleri, L., Fossetti, M. and Papia, M. (2005), "Infilled frames: Developments in the evaluation of cyclic behaviour under lateral loads", Struct. Eng. Mech., 21(4), 469-494. https://doi.org/10.12989/sem.2005.21.4.469.
- CEN (2004), Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, EN1998-1, Comite Europeen de Normalisation; France.
- CEN (2005a), Eurocode 3: Design of Structures - Part 1-1: General Rules and Rules for Buildings, EN1993-1-1, Comite Europeen de Normalisation; France.
- CEN (2005b), Eurocode 3: Design of Structures - Part 1-8: Design of Joints, EN1993-1-8, Comite Europeen de Normalisation; France.
- Chen, X. and Liu, Y. (2016), "A finite element study of the effect of vertical loading on the in-plane behavior of concrete masonry infills bounded by steel frames", Eng. Struct., 117, 118-129. https://doi.org/10.1016/j.engstruct.2016.03.010.
- Chrysostomou, C.Z., Gergely, P. and Abel, J.F. (2002), "A Six-Strut Model for Nonlinear Dynamic Analysis of Steel Infilled Frames", J. Struct. Stability Dynam., 02(03), 335-353. https://doi.org/10.1142/S0219455402000567.
- Chrysostomou, C.Z. and Asteris, P.G. (2012), "On the in-plane properties and capacities of infilled frames", Eng. Struct., 41, 385-402. https://doi.org/10.1016/j.engstruct.2012.03.057.
- Crisafulli, F.J. and Carr, A.J. (2007), "Proposed macro-model for the analysis of infilled frame structures", Bull. New Zealand Soc. Earthq. Eng., 40(2), 69-77. https://doi.org/10.5459/bnzsee.40.2.69-77
- CSI (2016), SAP-2000: Analysis Reference Manual, Computers and Structures Inc.; Berkeley, California, U.S.A.
- Dawe, J.L., Schriver, A.B. and Sofocleous, C. (1989), "Masonry infilled steel frames subjected to dynamic load", Canadian J. Civil Eng., 16(6), 877-885. https://doi.org/10.1139/l89-130.
- Dawe, J.L. and Seah, C.K. (1989), "Behaviour of masonry infilled steel frames", Canadian J. Civil Eng., 16(6), 865-876. https://doi.org/10.1139/l89-129.
- De Domenico, D., Falsone, G. and Laudani, R. (2018), "In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach", Struct. Eng. Mech., 68(4), 423-442. https://doi.org/10.12989/sem.2018.68.4.423.
- El-Dakhakhni, W.W., Elgaaly, M. and Hamid, A. (2003), "Three-strut model for concrete masonry infilled steel frames", J. Struct. Eng., 129(2), 177-185. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(177)
- Eladly, M.M. (2017), "Numerical study on masonry infilled steel frames under vertical and cyclic horizontal loads", J. Construct. Steel Res., 138, 308-323. https://doi.org/10.1016/j.jcsr.2017.07.016.
- Fardis, M.N. and Panagiotakos, T.B. (1997), "Seismic design and response of bare and masonry infilled reinforced concrete buildings part II: Infilled structures", J. Earthq. Eng., 01(03), 475-503.
- Flanagan, R. and Bennett, R.M. (1999), "Bidirectional behavior of structural clay tile infilled frames", J. Struct. Eng., 125(3), 236-244. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(236)
- Hamburger, R.O. (1993), "Methodology for seismic capacity evaluation of steel-frame buildings with infill unreinforced masonry", National Earthquake Conference, 2, 173-182, Central United States Earthquake Consortium, U.S.A.
- Hendry, A.W. (1981), Structural Brickwork, John Wiley and Sons, New Jersey, U.S.A.
- Holmes, M. (1961), "Steel frames with brickwork and concrete infilling", Proceedings Institution Civil Eng., 19(4), 473-478. https://doi.org/10.1680/iicep.1961.11305.
- Jazany, R.A., Hajirasouliha, I. and Farshchi, H. (2013), "Influence of masonry infill on the seismic performance of concentrically braced frames", J. Construct. Steel Res., 88, 150-163. https://doi.org/10.1016/j.jcsr.2013.05.009.
- Kakaletsis, D.J. and Karayannis, C.G. (2008), "Influence of Masonry Strength and Openings on Infilled R/C Frames Under Cycling Loading", J. Earthq. Eng., 12(2), 197-221. https://doi.org/10.1080/13632460701299138.
- Klingner, R.E. and Bertero, V.V. (1978), "Earthquake resistance of infilled frames", J. Struct. Division, 104(6), 973-989. https://doi.org/10.1061/JSDEAG.0004947
- Liauw, T. and Kwan, K. (1984), "Nonlinear behaviour of nonintegral infilled frames", Comput. Struct., 18(3), 551-560. https://doi.org/10.1016/0045-7949(84)90070-1.
- Liu, Y. and Manesh, P. (2013), "Concrete masonry infilled steel frames subjected to combined in plane lateral and axial loading - An experimental study", Eng. Struct., 52, 331-339. https://doi.org/10.1016/j.engstruct.2013.02.038.
- Liu, Y. and Soon, S. (2012), "Experimental study of concrete masonry infills bounded by steel frames", Canadian J. Civil Eng., 39(2), 180-190. https://doi.org/10.1139/l11-122.
- Longo, F., Wiebe, L., da Porto, F. and Modena, C. (2018), "Application of an in-plane/out-of-plane interaction model for URM infill walls to dynamic seismic analysis of RC frame buildings", Bull. Earthq. Eng., 16(12), 6163-6190. https://doi.org/10.1007/s10518-018-0439-0.
- Mainstone, R.J. (1971), "On the stiffness and strengths of infilled frames", ICE Proceedings, Supplement (Iv), PAPER 7360, 57-90, Garston, Watford, United Kingdom.
- Mainstone, R.J. (1974), "Supplementary note on the stiffness and strengths of infilled frames", Current Paper CP 13/74, Garston, Watford, United Kingdom.
- Markulak, D., Radic, I. and Sigmund, V. (2013), "Cyclic testing of single bay steel frames with various types of masonry infill", Eng. Struct., 51, 267-277. https://doi.org/10.1016/j.engstruct.2013.01.026.
- Moghadam, H.A., Mohammadi, M.G. and Ghaemian, M. (2006), "Experimental and analytical investigation into crack strength determination of infilled steel frames", J. Construct. Steel Res., 62(12), 1341-1352. https://doi.org/10.1016/j.jcsr.2006.01.002.
- Moghaddam, H.A. (2004), "Lateral load behavior of masonry infilled steel frames with repair and retrofit", J. Struct. Eng., 130(1), 56-63. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(56)
- Mohyeddin, A., Dorji, S., Gad, E.F. and Goldsworthy, H.M. (2017), "Inherent limitations and alternative to conventional equivalent strut models for masonry infill-frames", Eng. Struct., 141, 666-675. https://doi.org/10.1016/j.engstruct.2017.03.061.
- Mondal, G. and Jain, S.K. (2008), "Lateral stiffness of masonry infilled Reinforced Concrete (RC) frames with central opening", Earthq. Spectra, 24(3), 701-723. https://doi.org/10.1193/1.2942376.
- Nwofor, T.C. (2012), "Shear resistance of reinforced concrete infilled frames", J. Appl. Sci. Technol., 2(5), 148-163.
- Panto, B., Calio, I. and Lourenco, P.B. (2018), "A 3D discrete macro-element for modelling the out-of-plane behaviour of infilled frame structures", Eng. Struct., 175, 371-385. https://doi.org/10.1016/j.engstruct.2018.08.022.
- Panto, B., Silva, L., Vasconcelos, G. and Lourenco, P.B. (2019), "Macro-modelling approach for assessment of out-of-plane behavior of brick masonry infill walls", Eng. Struct., 181, 529-549. https://doi.org/10.1016/j.engstruct.2018.12.019.
- Papia, M., Cavaleri, L. and Fossetti, M. (2003), "Infilled frames: Developments in the evaluation of the stiffening effect of infills", Struct. Eng. Mech., 16(6), 675-693. http://doi.org/10.12989/sem.2003.16.6.675.
- Polyakov, S.V. (1960), "On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall", Translations in Earthquake Engineering, Earthquake engineering Research Institute, Oakland, California, 36-42.
- Radic, I., Markulak, D. and Sigmund, V. (2016), "Analytical modelling of masonry-infilled steel frames", Technical Gazette, 23(1), 115-127. http://doi.org/10.17559/TV-20150528133754.
- Rodrigues, H., Varum, H. and Costa, A. (2010), "Simplified macro-model for infill masonry panels", J. Earthq. Eng., 14(3), 390-416. https://doi.org/10.1080/13632460903086044.
- Smith, B. (1967), "Methods for predicting the lateral stiffness and strength of multi-storey infilled frames", Building Sci., 2(3), 247-257. https://doi.org/10.1016/0007-3628(67)90027-8.
- Smith, B.S. (1962), "Lateral stiffness of infilled frames", J. Struct. Division, 88(6), 183-226. https://doi.org/10.1061/JSDEAG.0000849
- Smith, B.S. (1966), "Behavior of square infilled frames", J. Struct. Division, 92(1), 381-404. https://doi.org/10.1061/JSDEAG.0001387
- Smyrou, E., Blandon, C., Antoniou, S., Pinho, R. and Crisafulli, F. (2011), "Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames", Bull. Earthq. Eng., 9(5), 1519-1534. https://doi.org/10.1007/s10518-011-9262-6.
- Tanganelli, M., Rotunno, T. and Viti, S. (2017), "On the modelling of infilled RC frames through strut models", Cogent Eng., 4(1), 1371578. https://doi.org/10.1080/23311916.2017.1371578
- Tarque, N., Candido, L., Camata, G. and Spacone, E. (2015), "Masonry infilled frame structures: State-of-the-art review of numerical modelling", Earthq. Struct., 8(1), 225-251. http://doi.org/10.12989/eas.2015.8.1.895.
- Tasnimi, A.A. and Mohebkhah, A. (2011), "Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches", Eng. Struct., 33(3), 968-980. https://doi.org/10.1016/j.engstruct.2010.12.018.
- Yekrangnia, M. and Mohammadi, M. (2017), "A new strut model for solid masonry infills in steel frames", Eng. Struct., 135, 222-235. https://doi.org/10.1016/j.engstruct.2016.10.048.