DOI QR코드

DOI QR Code

Influence of shear preload on wave propagation in small-scale plates with nanofibers

  • Farajpour, M.R. (Borjavaran Center of Applied Science and Technology, University of Applied Sciences and Technology) ;
  • Shahidi, A.R. (Department of Mechanical Engineering, Isfahan University of Technology) ;
  • Farajpour, A. (Department of Mechanical Engineering, Isfahan University of Technology)
  • Received : 2018.12.22
  • Accepted : 2019.03.17
  • Published : 2019.05.25

Abstract

In the present work, an attempt is made to explore the effects of shear in-plane preload on the wave propagation response of small-scale plates containing nanofibers. The small-scale system is assumed to be embedded in an elastic matrix. The nonlocal elasticity is utilized in order to develop a size-dependent model of plates. The proposed plate model is able to describe both nanofiber effects and the influences of being at small-scales on the wave propagation response. The size-dependent differential equations are derived for motions along all directions. The size-dependent coupled equations are solved analytically to obtain the phase and group velocities of the small-scale plate under a shear in-plane preload. The effects of this shear preload in conjunction with nanofiber and size effects as well as the influences of the elastic matrix on the wave propagation response are analyzed in detail.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. http://doi.org/10.12989/scs.2016.20.5.963
  2. Akgoz, B. and Civalek, O. (2013), "Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48(4), 863-873. https://doi.org/10.1007/s11012-012-9639-x
  3. Akgoz, B. and Civalek, O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039
  4. Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. Part B, 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049
  5. Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43(4), 954-959. https://doi.org/10.1016/j.physe.2010.11.024.
  6. Asemi, S., Farajpour, A., Asemi, H. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM", Physica E, 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009
  7. Asemi, S.R. and Farajpour, A. (2014), "Vibration characteristics of double-piezoelectric-nanoplate-systems", IET Micro Nano Lett., 9(4), 280-285. https://doi.org/10.1049/mnl.2013.0741.
  8. Asemi, S.R., Farajpour, A., Borghei, M. and Hassani, A.H. (2014), "Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics", Latin American J. Solids Struct., 11(4), 704-724. http://doi.org/10.1590/S1679-78252014000400009
  9. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453
  10. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  11. Aydogdu, M. and Arda, M. (2016), "Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity", J. Mech. Mater. Design, 12(1), 71-84. https://doi.org/10.1007/s10999-014-9292-8.
  12. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  13. Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. http://doi.org/10.12989/sss.2016.18.4.755 .
  14. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E. and Mahmoud, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct, 18(4), 1063-1081. http://doi.org/10.12989/scs.2015.18.4.1063.
  15. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. http://doi.org/10.12989/sem.2017.62.6.695.
  16. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.
  17. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Physics D, 41(22), 225404. https://doi.org/10.1016/j.commatsci.2011.07.021.
  18. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst, 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  19. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  20. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst, 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  21. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  22. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  23. Brinson, L.C. (1993), "One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable", Journal of intelligent material systems and structures, 4(2), 229-242. https://doi.org/10.1177/1045389X9300400213
  24. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  25. Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., 55(3), 495-510. http://doi.org/10.12989/sem.2015.55.3.495
  26. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B, 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  27. Ebrahimi, F. and Barati, M.R. (2018), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693
  28. Ebrahimi, F. and Barati, M.R. (2018), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143
  29. Ebrahimi, F. and Barati, M.R. (2018), "A unified formulation for modeling of inhomogeneous nonlocal beams", Struct. Eng. Mech., 66(3), 369-377. https://doi.org/10.12989/sem.2018.66.3.369
  30. Ebrahimi, F. and Barati, M.R. (2018), "Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams", Struct. Eng. Mech., 66(2), 237-248. https://doi.org/10.12989/sem.2018.66.2.237
  31. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  32. Ebrahimi, F. and Heidari, E. (2018), "Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method", Struct. Eng. Mech.., 68(1), 131-157. http://doi.org/10.12989/sem.2018.68.1.131
  33. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higherorder shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781
  34. Farajpour, A. and Rastgoo, A. (2017), "Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory", Results Phys., 7, 1367-1375. https://doi.org/10.1016/j.rinp.2017.03.038
  35. Farajpour, A. and Rastgoo, A. (2017), "Size-dependent static stability of magneto-electro-elastic CNT/MT-based composite nanoshells under external electric and magnetic fields", Microsyst. Technol., 23(12), 5815-5832. https://doi.org/10.1007/s00542-017-3440-7.
  36. Farajpour, A., Rastgoo, A. and Farajpour, M. (2017), "Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics", Compos. Struct., 180, 179-191. https://doi.org/10.1016/j.compstruct.2017.07.100.
  37. Farajpour, A., Rastgoo, A. and Mohammadi, M. (2014), "Surface effects on the mechanical characteristics of microtubule networks in living cells", Mech. Res. Communications, 57, 18-26. https://doi.org/10.1016/j.mechrescom.2014.01.005.
  38. Farajpour, A., Rastgoo, A. and Mohammadi, M. (2017), "Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment", Physica B, 509, 100-114. https://doi.org/10.1016/j.physb.2017.01.006.
  39. Farajpour, M., Shahidi, A. and Farajpour, A. (2018), "A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires", Mater. Res. Exp., 5(3), 035026. https://doi.org/10.1088/2053-1591/aab3a9
  40. Farajpour, M., Shahidi, A., Hadi, A. and Farajpour, A. (2018), "Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magnetoelectro-elastic nanofilms", Mech. Adv. Mater. Struct., http://doi.org/10.1080/15376494.2018.1432820.
  41. Farajpour, M., Shahidi, A., Tabataba'i-Nasab, F. and Farajpour, A. (2018), "Vibration of initially stressed carbon nanotubes under magneto-thermal environment for nanoparticle delivery via higher-order nonlocal strain gradient theory", European Phys. J. Plus, 133(6), 219. https://doi.org/10.1140/epjp/i2018-12039-5.
  42. Farajpour, M.R., Rastgoo, A., Farajpour, A. and Mohammadi, M. (2016), "Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory", IET Micro Nano Lett., 11(6), 302-307. https://doi.org/10.1049/mnl.2016.0081
  43. Farajpour, M.R., Shahidi, A. and Farajpour, A. (2018), "Resonant frequency tuning of nanobeams by piezoelectric nanowires under thermo-electro-magnetic field: A theoretical study", Micro Nano Lett., 13(11), 1627-1632. https://doi.org/10.1049/mnl.2018.5286
  44. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. http://doi.org/10.12989/scs.2018.27.1.109
  45. Guven, U. (2014), "Transverse vibrations of single-walled carbon nanotubes with initial stress under magnetic field", Compos. Struct., 114, 92-98. https://doi.org/10.1016/j.compstruct.2014.03.054.
  46. Hamza-Cherif, R., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, S. and Bensattalah, T. (2018). "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54(1-14), https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
  47. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008), "Sound wave propagation in single-walled carbon nanotubes with initial axial stress", J. Appl. Physics, 104(1), 014301. https://doi.org/10.1063/1.2949274.
  48. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42.
  49. Kahn, H., Huff, M. and Heuer, A. (1998), "The TiNi shapememory alloy and its applications for MEMS", J. Micromech. Microeng., 8(3), 213. https://doi.org/10.1088/0960-1317/8/3/007
  50. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  51. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  52. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  53. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018), "Wave dispersion of mounted graphene with initial stress", Thin-Walled Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004.
  54. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  55. Kiani, K., Gharebaghi, S.A. and Mehri, B. (2017), "In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields", Struct. Eng. Mech., 61(1), 65-76. https://doi.org/10.12989/sem.2017.61.1.065.
  56. Ma, L., Ke, L., Reddy, J., Yang, J., Kitipornchai, S. and Wang, Y. (2018), "Wave propagation characteristics in magneto-electroelastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061.
  57. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
  58. Mohammadi, M., Farajpour, A. and Goodarzi, M. (2014), "Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium", Comput. Mater. Sci., 82, 510-520. https://doi.org/10.1016/j.commatsci.2013.10.022.
  59. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst, 21(4), 397-405. http://doi.org/10.12989/sss.2018.21.4.397
  60. Mouffoki, A., Bedia, E., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new twounknown trigonometric shear deformation beam theory", Smart Struct. Syst, 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  61. Murmu, T. and Pradhan, S. (2009), "Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity", J. Appl. Phys., 106(10), 104301. https://doi.org/10.1063/1.3233914.
  62. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
  63. Park, J.-S., Kim, J.-H. and Moon, S.-H. (2004), "Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers", Compos. Struct., 63(2), 179-188. https://doi.org/10.1016/S0263-8223(03)00146-6.
  64. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  65. Reddy, J. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
  66. Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  67. Selim, M., Abe, S. and Harigaya, K. (2009), "Effects of initial compression stress on wave propagation in carbon nanotubes", Europ. Phys. J. B, 69(4), 523-528. https://doi.org/10.1140/epjb/e2009-00184-5.
  68. Shen, Z.B., Tang, G.J., Zhang, L. and Li, X.F. (2012), "Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress", Comput. Mater. Sci., 58, 51-58. https://doi.org/10.1016/j.commatsci.2012.02.011.
  69. Shenas, A.G. and Malekzadeh, P. (2016), "Free vibration of functionally graded quadrilateral microplates in thermal environment", Thin-Walled Struct., 106, 294-315. https://doi.org/10.1016/j.tws.2016.05.001.
  70. Song, J., Shen, J. and Li, X. (2010), "Effects of initial axial stress on waves propagating in carbon nanotubes using a generalized nonlocal model", Comput. Mater. Sci., 49(3), 518-523. https://doi.org/10.1016/j.commatsci.2010.05.043.
  71. Wang, X. and Cai, H. (2006), "Effects of initial stress on noncoaxial resonance of multi-wall carbon nanotubes", Acta Materialia, 54(8), 2067-2074. https://doi.org/10.1016/j.actamat.2005.12.039.
  72. Wang, Y.-Z., Li, F.-M. and Kishimoto, K. (2010), "Flexural wave propagation in double-layered nanoplates with small scale effects", J. Appl. Phys., 108(6), 064519. https://doi.org/10.1063/1.3481438.
  73. Wang, Y.-Z., Li, F.-M. and Kishimoto, K. (2010), "Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress", Appl. Physics A, 99(4), 907-911. https://doi.org/10.1007/s00339-010-5666-4.
  74. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech, 53(6), 1143-1165. http://doi.org/10.12989/sem.2015.53.6.1143.
  75. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst, 21(1), 15-25. http://doi.org/10.12989/sss.2018.21.1.015
  76. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst, 21(1), 65-74. http://doi.org/10.12989/sss.2018.21.1.065.
  77. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  78. Zenkour, A. (2018), "Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium", European Phys. J. Plus, 133(5), 196. https://doi.org/10.1140/epjp/i2018-12014-2.
  79. Zenkour, A. and Sobhy, M. (2013), "Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium", Physica E, 53, 251-259. https://doi.org/10.1016/j.physe.2013.04.022.
  80. Zenkour, A.M. and Sobhy, M. (2015), "A simplified shear and normal deformations nonlocal theory for bending of nanobeams in thermal environment", Physica E, 70, 121-128. https://doi.org/10.1016/j.physe.2015.02.022.

Cited by

  1. Elastic waves in fluid-conveying carbon nanotubes under magneto-hygro-mechanical loads via a two-phase local/nonlocal mixture model vol.6, pp.8, 2019, https://doi.org/10.1088/2053-1591/ab2396