DOI QR코드

DOI QR Code

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid (Departement Construction Mecanique et Productique, FGM&GP. Universite des Sciences et de la Technologie Houari Boumediene) ;
  • Boulanouar, Lakhdar (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar Annaba University) ;
  • Azizi, Mohamed Walid. (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar Annaba University) ;
  • Bouziane, Abderrahim (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar Annaba University)
  • Received : 2018.11.05
  • Accepted : 2019.02.27
  • Published : 2019.05.25

Abstract

In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Keywords

References

  1. Aneiro Federico, M., Coelho Reginaldo, T. and Brandao Lincoln, C. (2008) "Turning hardened steel using coated carbide at high cutting speeds", J. Brazil Soc. Mech. Sci. Eng., 30(2) 104-109. http://doi.org/10.1590/S1678-58782008000200002.
  2. Arizmendi, M., Campa, F.J., Fernandez, J., Lopes de Lacalle, L.N., Gil, A., Bilbao, E., Veiga, F. and Lamikiz, A., (2009), "Model for surface topography prediction in peripheral milling considering tool vibration", CIRP Annals, 581, 93-96. https://doi.org/10.1016/j.cirp.2009.03.084.
  3. Asilturk, I. and Akkus, H. (2011), "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method", Measurement, 44(9), 1697-1704. https://doi.org/10.1016/j.measurement.2011.07.003.
  4. Azizi, M.W., Belhadi, S., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2012), "Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel", J. Mech. Sci. Technol., 26(12), 4105-4114. https://doi.org/10.1007/s12206-012-0885-6.
  5. Behnam, D. and Behzad E. (2015), "Tool wear mechanisms and multi-response optimization of tool life and volume of material removed in turning of N-155 iron-nickel-base superalloy using RSM", Measurement, 68, 286-294. https://doi.org/10.1016/j.measurement.2015.03.006.
  6. Bouacha, K., Yallese, M.A., Khamel, S. and Belhadi, S. (2014), "Analysis and optimization of hard turning operation using cubic boron nitride tool", Int. J. Refract. Metal. Hard Mater., 45, 160-178. https://doi.org/10.1016/j.ijrmhm.2014.04.014.
  7. Bouzakis, K.D., Hadjiyiannis, S., Skordaris, G., Anastopoulos, J., Mirisidis, I., Michailidis, N., Efstathiou, K., Knotek, O., Erkens, G., Cremer, R. and Rambadt, S. (2003), "The influence of the coating thickness on its strength properties and on the milling performance of PVD coated inserts", Surface Coatings Technol., 174, 393-401. https://doi.org/10.1016/S0257-8972(03)00678-9.
  8. Ciftci, I., (2006), "Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools", Tribology International, 39(6), 565-569. https://doi.org/10.1016/j.triboint.2005.05.005.
  9. Cicek, A., Kivak, T. and Ekici, E. (2015), "Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills", J. Intellect. Manufact., 26(2), 295-305. https://doi.org/10.1007/s10845-013-0783-5.
  10. Devillez, A., Schneider, F., Dominiak, S., Dudzinski, D. and Larrouquere, D. (2007), "Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools", Wear, 262, 931-942. https://doi.org/10.1016/j.wear.2006.10.009.
  11. Grzesik, W. (1998), "The role of coatings in controlling the cutting process when turning with coated indexable inserts", J. Mater. Pr. Technol., 79(1), 133-143. https://doi.org/10.1016/S0924-0136(97)00491-3.
  12. Grzesik, W. (1998), "The role of coatings in controlling the cutting process when turning with coated indexable inserts", J. Mater. Process. Technol., 179, 133-143. https://doi.org/10.1016/S0924-0136(97)00491-3.
  13. Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measur., 46(5), 1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016.
  14. Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. https://doi.org/10.12989/sem.2017.61.4.519.
  15. Keblouti, O., Boulanouar, L., Bouziane, A. and Azizi, M.W. (2017), "impact du revetement et des conditions de coupe sur le comportement a l'usure des outils et sur la rugosite de la surface usinee", U.P.B. Sci. Bull., Series D, 79(3).
  16. Khettabi, R., Nouioua, M., Djebara, A. and Songmene, V. (2017), "Effect of MQL and dry processes on the particle emission and part quality during milling of aluminum alloys", Int. J. Adv. Manufact. Technol., 92(5-8), 2593-2598. https://doi.org/10.1007/s00170-017-0339-5.
  17. Lima, J.G., Avila, R.F., Abrao, A.M., Faustino, M., Davim, J.P. (2005), "Hard turning: AISI 4340 high strength alloy steel and AISI D2 cold work tool steel", J. Mater. Process. Technol., 169 (3), 388-395. https://doi.org/10.1016/j.jmatprotec.2005.04.082.
  18. Rech, J. (2006), "A multiview approach to the tribological characterisation of cutting tool coatings for steels in high-speed dry turning", Int. J. Mach. Mach. Mater., 1(1), 27-44. https://doi.org/10.1504/IJMMM.2006.010657.
  19. Risbood, K.A., Dixit, U.S. and Sahasrabudhe, A.D. (2003), "Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process", J. Mater. Process. Technol., 132(1-3), 203-214. https://doi.org/10.1016/S0924-0136(02)00920-2.
  20. Sahoo, A.K. and Sahoo, B. (2013), "Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: Part-II (RSM, grey relational and techno economical approach)", Measurement, 46(8), 2868-2884. https://doi.org/10.1016/j.measurement.2012.09.023.
  21. Suresh, R., Basavarajappa, S., Gaitonde, V.N., and Samuel, G.L. (2012), "Machinability investigations on hardened AISI 4340 steel using coated carbide insert", Int. J. Refractory Metals Hard Mater., 33, 75-86. https://doi.org/10.1016/j.ijrmhm.2012.02.019.
  22. Thomas, M., Beauchamp, Y., Youssef, A.Y. and Masounave, J. (1996), "Effect of tool vibration on surface roughness during lathe dry turning process", Comput. Industrial Eng., 31(3-4), 637-644. https://doi.org/10.1016/S0360-8352(96)00235-5.
  23. Upadhyay, V., Jain, P.K. and Mehta, N.K. (2013), "In-process prediction of surface roughness in turning of Ti-6Al-4V alloy usingcutting parameters and vibration signals", Measur., 46(1), 154-160. https://doi.org/10.1016/j.measurement.2012.06.002.
  24. Yildirim, C.V., Kivak, T. and Erzincanli, F. (2019), "Tool wear and surface roughness analysis in milling with ceramic tools of Waspaloy: a comparison of machining performance with different cooling methods", J. Brazilian Soc. Mech. Sci. Eng., 41(2), 83. https://doi.org/10.1007/s40430-019-1582-5.
  25. Zhang, K., Deng, J., Meng, R., Gao, P. and Yue, H. (2015), "Effect of nano-scale textures on cutting performance of WC/Co-based Ti 55 Al 45 N coated tools in dry cutting", Int. J. Refract. Metal. Hard Mater., 51, 35-49. https://doi.org/10.1016/j.ijrmhm.2015.02.011.

Cited by

  1. Multi-objective optimization of mixed convection air cooling in an inclined channel with discrete heat sources vol.79, pp.1, 2019, https://doi.org/10.12989/sem.2021.79.1.051