References
- Adom-Asamoah, M. and Ankamah, N.O. (2016), "Effect of design ductility on the progressive collapse potential of RC frame structures designed to Eurocode 8", American J. Civil Eng., 4(2), 24-33. https://doi.org/10.11648/j.ajce.20160401.13
- Almusallam, T.H., Elsanadedy, H.M., Abbas, H., Alsayed, S.H. and Al-Salloum, Y.A. (2010), "Progressive collapse analysis of a RC building subjected to blast loads" Struct. Eng. Mech., 36(3), 301-319. https://doi.org/10.12989/sem.2010.36.3.301
- Astaneh-Asl, A., Jones, B. and Zhao, Y. and Hwa, R. (2001), "Progressive collapse resistance of steel building floors", UCB/CEE-Steel-2001; University of California, Berkeley, U.S.A.
- BHRC (Building and Housing Research Center) (2004), Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, BHRC, Tehran, Iran.
- Byfield, M. and Paramasivam, S. (2007), "Catenary action in steel-framed buildings", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 160(5), 247-257. https://doi.org/10.1680/stbu.2007.160.5.247
- Chen, J., Huang, X., Ma, R. and He, M. (2011), "Experimental study on the progressive collapse resistance of a two-story steel moment frame", J. Perform. Construct. Facilities, 26(5), 567-575. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000287
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553
- Crawford, J.E. (2002), "Retrofit methods to mitigate progressive collapse", The Multihazard Mitigation Council of the National Institute of Building Sciences, National Workshop and Recommendations for Future Effort, July.
- Dinu, F., Marginean, I. and Dubina, D. (2017), "Experimental testing and numerical modelling of steel moment-frame connections under column loss", Eng. Struct., 151, 861-878. https://doi.org/10.1016/j.engstruct.2017.08.068
- Faridmehr, I. and Osman, M.H., Tahir, M., Nejad, A.F. and Azimi, M. (2015), "Seismic and progressive collapse assessment of new proposed steel connection", Adv. Struct. Eng., 18(3), 439-452. https://doi.org/10.1260/1369-4332.18.3.439
- Fu, F. (2016), Structural Analysis and Design to Prevent Disproportionate Collapse, CRC Press, London, United Kingdom.
- Gerasimidis, S., Deodatis, G., Kontoroupi, T. and Ettouney, M. (2015), "Loss-of-stability induced progressive collapse modes in 3D steel moment frames", Struct. Infrastruct. Eng., 11(3), 334-344. https://doi.org/10.1080/15732479.2014.885063
- Griffiths, H., Pugsley, A. and Saunders, O. (1968), "Report of the inquiry into the collapse of flats at Ronan Point, Canning Town", Minister of Housing and Local Government, United Kingdom.
- GSA (2013), Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance, General Services Administration, Washington, U.S.A.
- Han, Q., Li, X., Liu, M. and Spencer Jr, B.F. (2019), "Experimental investigation of beam-column joints with cast steel stiffeners for progressive collapse prevention", J. Struct. Eng., 145(5), 04019020. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002301
- JalaliLarijani, R., Celikag, M., Aghayan, I. and Kazemi, M. (2013), "Progressive collapse analysis of two existing steel buildings using a linear static procedure", Struct. Eng. Mech., 48(2), 207-220. https://doi.org/10.12989/sem.2013.48.2.207
- Khaloo, A. and Omidi, H. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse", Steel Compos. Struct., 26(5), 549-556. https://doi.org/10.12989/SCS.2018.26.5.549
- Khandelwal, K. and El-Tawil, S. (2007), "Collapse behavior of steel special moment resisting frame connections", J. Struct. Eng., 133(5), 646-655. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(646)
- Kim, J. and Park, J. (2008), "Design of steel moment frames considering progressive collapse", Steel Compos. Struct., 8(1), 85-98. https://doi.org/10.12989/scs.2008.8.1.085
- Kim, J., Lee, S. and Min, K.W. (2014), "Design of MR dampers to prevent progressive collapse of moment frames", Struct. Eng. Mech., 52(2), 291-306. https://doi.org/10.12989/sem.2014.52.2.291
- Liu, C., Tan, K.H. and Fung, T.C. (2015), "Component-based steel beam-column connections modelling for dynamic progressive collapse analysis", J. Construct. Steel Res., 107, 24-36. https://doi.org/10.1016/j.jcsr.2015.01.001
- Lu, X., Lin, K., Li, Y., Guan, H., Ren, P. and Zhou, Y. (2017), "Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario", Eng. Struct., 149, 91-103. https://doi.org/10.1016/j.engstruct.2016.07.039
- Mashhadi, J. and Saffari, H. (2017), "Dynamic increase factor based on residual strength to assess progressive collapse", Steel Compos. Struct., 25(5), 617-624. https://doi.org/10.12989/SCS.2017.25.5.617
- Mirtaheri, M. and Zoghi, M.A. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357
- Ren, P., Li, Y., Lu, X., Guan, H. and Zhou, Y. (2016), "Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam-slab substructures under a middle-column-removal scenario", Eng. Struct., 118, 28-40. https://doi.org/10.1016/j.engstruct.2016.03.051
- Rezvani, F. H. and Asgarian, B. (2014), "Effect of seismic design level on safety against progressive collapse of concentrically braced frames", Steel Compos. Struct., 16(2), 135-156. https://doi.org/10.12989/scs.2014.16.2.135
- Shan, S., Li, S., Xu, S. and Xie, L. (2016), "Experimental study on the progressive collapse performance of RC frames with infill walls", Eng. Struct., 111, 80-92. https://doi.org/10.1016/j.engstruct.2015.12.010
- Suwondo, R., Cunningham, L., Gillie, M. and Bailey, C. (2019), "Progressive collapse analysis of composite steel frames subject to fire following earthquake", Fire Safety J., 103, 49-58. https://doi.org/10.1016/j.firesaf.2018.12.007
- Tan, S. and Astaneh-Asl, A. (2003), "Cable-based retrofit of steel building floors to prevent progressive collapse", UCB/CEESTEEL-2003/02; University of California, U.S.A.
- Tsitos, A. and Mosqueda, G. (2012), "Experimental investigation of the progressive collapse of a steel special moment-resisting frame and a post-tensioned energy-dissipating frame", Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering, Springer, Dordrecht, Germany.
- UFC 4-023-03 (2013), Design of Buildings to Resist Progressive Collapse, Department of Defense, Washington, D.C., U.S.A.
- Yang, B., Tan, K.H., Xiong, G. and Nie, S.D. (2016), "Experimental study about composite frames under an internal column-removal scenario", J. Construct. Steel Res., 121, 341-351. https://doi.org/10.1016/j.jcsr.2016.03.001
- Yi, W.J., He, Q.F., Xiao, Y. and Kunnath, S.K. (2008), "Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures", ACI Structural J., 105(4), 433.
- Zahrai, S.M. and Ezoddin, A. (2018), "Cap truss and steel strut to resist progressive collapse in RC frame structures", Steel Compos. Structures., 26(5), 635-648. https://doi.org/10.12989/SCS.2018.26.5.635
- Zhu, Y.F., Chen, C.H., Yao, Y., Keer, L.M. and Huang, Y. (2018), "Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames", Steel Compos. Structures., 28(2), 209-221. https://doi.org/10.12989/SCS.2018.28.2.209
- Zoghi, M.A. and Mirtaheri, M. (2016), "Progressive collapse analysis of steel building considering effects of infill panels", Struct. Eng. Mech., 59(1), 59-82. https://doi.org/10.12989/sem.2016.59.1.059
Cited by
- Seismic progressive collapse mitigation of buildings using cylindrical friction damper vol.20, pp.1, 2021, https://doi.org/10.12989/eas.2021.20.1.001
- Further study on improvement on strain concentration in through-diaphragm connection vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.135