DOI QR코드

DOI QR Code

A NOTE ON THE SOLUTION EQUIVALENCE OF GENERAL MINIMUM VARIANCE AND MINIMAX DISPARITY PROBLEMS FOR OWA OPERATOR

  • Received : 2018.10.01
  • Accepted : 2019.03.15
  • Published : 2019.05.30

Abstract

This note provides the solution equivalence of general minimum variance and minimax disparity problems for OWA operator. This result generalize a main theorem of Liu [International Journal of Approximate Reasoning, 48 (2008) 598-627.]

Keywords

References

  1. V. Chankong, Y.Y. Haimes, Mutiobjective Decision Making: Theory and Methodology, Elsevier Science B.V., 1983.
  2. D. Filev, R.R. Yager, Analytic properties of maximum entropy OWA operators, Information Sciences 85 (1995), 11-27. https://doi.org/10.1016/0020-0255(94)00109-O
  3. R. Fuller, P. Majlender, An analytic approach for obtaining maximal entropy OWA operator weights, Fuzzy Sets and Systems 124 (2001), 53-57. https://doi.org/10.1016/S0165-0114(01)00007-0
  4. R. Fuller, P. Majlender, On obtaining minimal variability OWA operator weights, Fuzzy Sets and Systems 136 (2003), 203-215. https://doi.org/10.1016/S0165-0114(02)00267-1
  5. D.H. Hong, A general minimax disparity OWA operator, International Journal of Fuzzy Logic and Intelligent Systems, Accepted.
  6. X. Liu, On the properties of equidifferent OWA operator, International Journal of Approx-imate Reasoning 43 (2006), 90-107. https://doi.org/10.1016/j.ijar.2005.11.003
  7. X. Liu, A general model of parameterized OWA aggregation with given orness level, International Journal of Approximate Reasoning 48 (2008), 598-627. https://doi.org/10.1016/j.ijar.2007.11.003
  8. X. Liu, L. Chen, On the properties of parametric geometric OWA operator, International Journal of Approximate Reasoning 35 (2004), 163-178. https://doi.org/10.1016/j.ijar.2003.09.001
  9. P. Majlender, OWA operators with maximal Renyi entropy, Fuzzy Sets and Systems 155 (2005), 340-360. https://doi.org/10.1016/j.fss.2005.04.006
  10. M. O' Hagan, Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic, in: Proc. 22nd annual IEEE Asilomar Conf. on Signals, Systems, Computers, Pacific Grove, CA, 1988, 681-689.