DOI QR코드

DOI QR Code

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh (Department of Aeronautical Engineering, Manav Rachna International Institute of Research & Studies) ;
  • Ravi Kumar, B. (School of Mechanical Engineering, SASTRA Deemed University)
  • Received : 2019.01.14
  • Accepted : 2019.03.23
  • Published : 2019.05.25

Abstract

This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.

Keywords

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. DOI: 10.12989/ANR.2018.6.1.039
  2. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., Int. J., 2(4), 199-210. DOI: 10.12989/anr.2014.2.4.199
  3. Bekuit, J.R., Oguamanam, D.C.D. and Damisa, O. (2009), "Quasi-2D finite element formulation of active-constrained layer beams", Smart Mater. Struct., 18(9), 095003. DOI: 10.1088/0964-1726/18/9/095003
  4. Benbakhti, A., Bouiadjra, M.B., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., Int. J., 22(5), 975-999. DOI: 10.12989/scs.2016.22.5.975
  5. Bendine, K., Boukhoulda, F.B., Nouari, M. and Satla, Z. (2016), "Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory", Earthq. Eng. Eng. Vib., 15(4), 611-620. DOI: 10.1007/s11803-016-0352-y
  6. Cortes, F. and Sarria, I. (2015), "Dynamic analysis of three-layer sandwich beams with thick viscoelastic damping core for finite element applications", Shock Vib., 1-9. DOI: 10.1155/2015/736256
  7. Datta, P. and Ray, M.C. (2018), "Smart damping of geometrically nonlinear vibrations of composite shells using fractional order derivative viscoelastic constitutive relations", Mech. Adv. Mater. Struct., 25(1), 62-78. DOI: 10.1080/15376494.2016.1255811
  8. Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. DOI: 10.12989/anr.2016.4.2.065
  9. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. DOI: 10.12989/ANR.2018.6.2.093
  10. Edery-Azulay, L. and Abramovich, H. (2006), "Augmented damping of a piezo-composite beam using extension and shear piezoceramic transducers", Compos. Part B: Eng., 37(4-5), 320-327. DOI: 10.1016/J.COMPOSITESB.2005.11.004
  11. Galucio, A.C., Deu, J.F. and Ohayon, R. (2004), "Finite element formulation of viscoelastic sandwich beams using fractional derivative operators", Computat0 Mech., 33, 282-291. DOI: 10.1007/s00466-003-0529-x
  12. Ghashochi-Bargh, H. and Sadr, M.H. (2014), "Vibration reduction of composite plates by piezoelectric patches using a modified artificial bee colony algorithm", Latin Am. J. Solids Struct., 11(10), 1846-1863. DOI: 10.1590/S1679-78252014001000009
  13. Kanasogi, R.M. and Ray, M.C. (2013), "Active constrained layer damping of smart skew laminated composite plates using 1-3 piezoelectric composites", J. Compos., 1-17. DOI: 10.1155/2013/824163
  14. Khalfi, B. and Ross, A. (2013), "Influence of partial constrained layer damping on the bending wave propagation in an impacted viscoelastic sandwich", Int. J. Solids Struct., 50(25-26), 4133-4144. DOI: 10.1016/J.IJSOLSTR.2013.07.023
  15. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. DOI: 10.12989/anr.2018.6.2.135
  16. Kumar, B.R. and Deol, S. (2017), "Free Vibration Analysis of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium Using DTM (Differential Transformation Method)", J. Eng. Sci. Technol., 12(10), 2700-2710.
  17. Kumar, R.S. and Ray, M.C. (2012), "Active constrained layer damping of smart laminated composite sandwich plates using 1-3 piezoelectric composites", Int. J. Mech. Mater. Des., 8(3), 197-218. DOI: 10.1007/s10999-012-9186-6
  18. Li, J., Ma, Z., Wang, Z. and Narita, Y. (2016), "Random vibration control of laminated composite plates with piezoelectric fiber reinforced composites", Acta Mechanica Solida Sinica, 29(3), 316-327. DOI: 10.1016/S0894-9166(16)30164-1
  19. Logan, D.L. (2012), A First Course in the Finite Element Method, (Fourth Edition), http://www.nelson.com.
  20. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. DOI: 10.12989/SCS.2018.29.3.405
  21. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H. and Nguyen-Thoi, T. (2018), "An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers", Comput. Methods Appl. Mech. Eng., 332, 25-46. DOI: 10.1016/J.CMA.2017.12.010
  22. Panda, S. and Kumar, A. (2018), "A design of active constrained layer damping treatment for vibration control of circular cylindrical shell structure", J. Vib. Control, 24(24), 5811-5841. DOI: 10.1177/1077546316670071
  23. Panda, R.K., Nayak, B. and Sarangi, S.K. (2016), "Active vibration control of smart functionally graded beams", Procedia Eng., 144, 551-559. DOI: 10.1016/J.PROENG.2016.05.041
  24. Polit, O., D'Ottavio, M. and Vidal, P. (2016), "High-order plate finite elements for smart structure analysis", Compos. Struct., 151, 81-90. DOI: 10.1016/j.compstruct.2016.01.092
  25. Ray, M.C. and Mallik, N. (2004), "Active control of laminated composite beams using a piezoelectric fiber reinforced composite layer", Smart Mater. Struct., 13(1), 146-152. DOI: 10.1088/0964-1726/13/1/016
  26. Sheng, G.G. and Wang, X. (2009), "Active control of functionally graded laminated cylindrical shells", Compos. Struct., 90(4), 448-457. DOI: 10.1016/J.COMPSTRUCT.2009.04.017
  27. Su, L., Li, X. and Wang, Y. (2016), "Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading", Steel Compos. Struct., Int. J., 21(2), 411-427. DOI: 10.12989/scs.2016.21.2.411
  28. Tzou, H.S., Lee, H.J. and Arnold, S.M. (2004), "Smart materials, precision sensors/actuators, smart structures, and structronic systems", Mech. Adv. Mater. Struct., 11(4-5), 367-393. DOI: 10.1080/15376490490451552
  29. Xiong, Q.L. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., Int. J., 25(2), 187-196. DOI: 10.12989/SCS.2017.25.2.187
  30. Yuvaraja, M. and Senthilkumar, M. (2013), "Comparative study on vibration characteristics of a flexible GFRP composite beam using SMA and PZT actuators", Procedia Eng., 64, 571-581. DOI: 10.1016/J.PROENG.2013.09.132
  31. Zemirline, A., Ouali, M. and Mahieddine, A. (2015), "Dynamic behavior of piezoelectric bimorph beams with a delamination zone", Steel Compos. Struct., Int. J., 19(3), 759-776. DOI: 10.12989/scs.2015.19.3.759

Cited by

  1. New control strategy for suppressing the local vibration of sandwich beams based on the wave propagation method vol.33, pp.1, 2019, https://doi.org/10.1177/1045389x211018845