References
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. DOI: 10.12989/ANR.2018.6.1.039
- Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., Int. J., 2(4), 199-210. DOI: 10.12989/anr.2014.2.4.199
- Bekuit, J.R., Oguamanam, D.C.D. and Damisa, O. (2009), "Quasi-2D finite element formulation of active-constrained layer beams", Smart Mater. Struct., 18(9), 095003. DOI: 10.1088/0964-1726/18/9/095003
- Benbakhti, A., Bouiadjra, M.B., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., Int. J., 22(5), 975-999. DOI: 10.12989/scs.2016.22.5.975
- Bendine, K., Boukhoulda, F.B., Nouari, M. and Satla, Z. (2016), "Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory", Earthq. Eng. Eng. Vib., 15(4), 611-620. DOI: 10.1007/s11803-016-0352-y
- Cortes, F. and Sarria, I. (2015), "Dynamic analysis of three-layer sandwich beams with thick viscoelastic damping core for finite element applications", Shock Vib., 1-9. DOI: 10.1155/2015/736256
- Datta, P. and Ray, M.C. (2018), "Smart damping of geometrically nonlinear vibrations of composite shells using fractional order derivative viscoelastic constitutive relations", Mech. Adv. Mater. Struct., 25(1), 62-78. DOI: 10.1080/15376494.2016.1255811
- Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. DOI: 10.12989/anr.2016.4.2.065
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. DOI: 10.12989/ANR.2018.6.2.093
- Edery-Azulay, L. and Abramovich, H. (2006), "Augmented damping of a piezo-composite beam using extension and shear piezoceramic transducers", Compos. Part B: Eng., 37(4-5), 320-327. DOI: 10.1016/J.COMPOSITESB.2005.11.004
- Galucio, A.C., Deu, J.F. and Ohayon, R. (2004), "Finite element formulation of viscoelastic sandwich beams using fractional derivative operators", Computat0 Mech., 33, 282-291. DOI: 10.1007/s00466-003-0529-x
- Ghashochi-Bargh, H. and Sadr, M.H. (2014), "Vibration reduction of composite plates by piezoelectric patches using a modified artificial bee colony algorithm", Latin Am. J. Solids Struct., 11(10), 1846-1863. DOI: 10.1590/S1679-78252014001000009
- Kanasogi, R.M. and Ray, M.C. (2013), "Active constrained layer damping of smart skew laminated composite plates using 1-3 piezoelectric composites", J. Compos., 1-17. DOI: 10.1155/2013/824163
- Khalfi, B. and Ross, A. (2013), "Influence of partial constrained layer damping on the bending wave propagation in an impacted viscoelastic sandwich", Int. J. Solids Struct., 50(25-26), 4133-4144. DOI: 10.1016/J.IJSOLSTR.2013.07.023
- Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. DOI: 10.12989/anr.2018.6.2.135
- Kumar, B.R. and Deol, S. (2017), "Free Vibration Analysis of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium Using DTM (Differential Transformation Method)", J. Eng. Sci. Technol., 12(10), 2700-2710.
- Kumar, R.S. and Ray, M.C. (2012), "Active constrained layer damping of smart laminated composite sandwich plates using 1-3 piezoelectric composites", Int. J. Mech. Mater. Des., 8(3), 197-218. DOI: 10.1007/s10999-012-9186-6
- Li, J., Ma, Z., Wang, Z. and Narita, Y. (2016), "Random vibration control of laminated composite plates with piezoelectric fiber reinforced composites", Acta Mechanica Solida Sinica, 29(3), 316-327. DOI: 10.1016/S0894-9166(16)30164-1
- Logan, D.L. (2012), A First Course in the Finite Element Method, (Fourth Edition), http://www.nelson.com.
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. DOI: 10.12989/SCS.2018.29.3.405
- Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H. and Nguyen-Thoi, T. (2018), "An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers", Comput. Methods Appl. Mech. Eng., 332, 25-46. DOI: 10.1016/J.CMA.2017.12.010
- Panda, S. and Kumar, A. (2018), "A design of active constrained layer damping treatment for vibration control of circular cylindrical shell structure", J. Vib. Control, 24(24), 5811-5841. DOI: 10.1177/1077546316670071
- Panda, R.K., Nayak, B. and Sarangi, S.K. (2016), "Active vibration control of smart functionally graded beams", Procedia Eng., 144, 551-559. DOI: 10.1016/J.PROENG.2016.05.041
- Polit, O., D'Ottavio, M. and Vidal, P. (2016), "High-order plate finite elements for smart structure analysis", Compos. Struct., 151, 81-90. DOI: 10.1016/j.compstruct.2016.01.092
- Ray, M.C. and Mallik, N. (2004), "Active control of laminated composite beams using a piezoelectric fiber reinforced composite layer", Smart Mater. Struct., 13(1), 146-152. DOI: 10.1088/0964-1726/13/1/016
- Sheng, G.G. and Wang, X. (2009), "Active control of functionally graded laminated cylindrical shells", Compos. Struct., 90(4), 448-457. DOI: 10.1016/J.COMPSTRUCT.2009.04.017
- Su, L., Li, X. and Wang, Y. (2016), "Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading", Steel Compos. Struct., Int. J., 21(2), 411-427. DOI: 10.12989/scs.2016.21.2.411
- Tzou, H.S., Lee, H.J. and Arnold, S.M. (2004), "Smart materials, precision sensors/actuators, smart structures, and structronic systems", Mech. Adv. Mater. Struct., 11(4-5), 367-393. DOI: 10.1080/15376490490451552
- Xiong, Q.L. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., Int. J., 25(2), 187-196. DOI: 10.12989/SCS.2017.25.2.187
- Yuvaraja, M. and Senthilkumar, M. (2013), "Comparative study on vibration characteristics of a flexible GFRP composite beam using SMA and PZT actuators", Procedia Eng., 64, 571-581. DOI: 10.1016/J.PROENG.2013.09.132
- Zemirline, A., Ouali, M. and Mahieddine, A. (2015), "Dynamic behavior of piezoelectric bimorph beams with a delamination zone", Steel Compos. Struct., Int. J., 19(3), 759-776. DOI: 10.12989/scs.2015.19.3.759
Cited by
- New control strategy for suppressing the local vibration of sandwich beams based on the wave propagation method vol.33, pp.1, 2019, https://doi.org/10.1177/1045389x211018845