References
- Badalov, F.B. (1987), Methods for Solving Integral and Integro-differential Equations of the Hereditary Theory of Viscoelasticity, Mexnat, Tashkent.
- Badalov, F.B., Eshmatov, Kh. and Yusupov, M. (1987), "Some methods of solution the systems of integrodifferential equations in problems of viscoelasticity", Appl. Math. Mech., 51(5), 867-871.
- Badalov, F.B., Khudayarov, B.A. and Abdukarimov, A. (2007), "Effect of the hereditary kernel on the solution of linear and nonlinear dynamic problems of hereditary deformable systems", J. Machine. Manufact. Reliability, 36(4), 328-335. https://doi.org/10.3103/S1052618807040048.
- Badalov, F.B., Khudayarov, B.A. and Abdukarimov, A. (2007), "Investigation of the influence of heredity on the core solution of linear and nonlinear dynamic problems of genetically-deformed systems", Prob. Mech. Eng. Reliability, 4, 107-110.
- Bolotin, V.V. (1961), Non-Conservative Problems of the Theory of Elastic Stability, Fizmatgiz, Moscow, Russia.
- Chai, Y.Y., Song, Z.G. and Li, F.M. (2017), "Investigations on the influences of elastic foundations on the aerothermoelastic flutter and thermal buckling properties of lattice sandwich panels in supersonic airflow", Acta Astronautica, 140, 176-189. https://doi.org/10.1016/j.actaastro.2017.08.016.
- Chen, J. and Li, Q.S. (2017), "Nonlinear aeroelastic flutter and dynamic response of composite laminated cylindrical shell in supersonic air flow", Compos. Struct., 168(15), 474-484. https://doi.org/10.1016/j.compstruct.2017.02.019.
- Dixon, I.R. and Mei, C. (1993), "Finite element analysis of large-amplitude panel flutter of thin laminates", AIAA J., 31(4), 701-707. https://doi.org/10.2514/3.11606.
- Duc, N.D., Pobedrya, B.E., Bich, D.H. and Thang, P.T. (2014), "Nonlinear analysis on flutter of S-FGM thin circular cylindrical shells with metal-ceramic-metal layers surrounded on elastic foundations using Ilyushin supersonic aerodynamic theory", Proceedings of the 3rd International Conference on Engineering Mechanics and Automation (ICEMA 3), Hanoi, Vietnam, October.
- Eshmatov, B.K., Eshmatov, K. and Khodzhaev, D.A. (2013), "Nonlinear flutter of viscoelastic rectangular plates and cylindrical panels of a composite with a concentrated masses", J. Appl. Mech. Tech. Phys., 54(4), 578-587. https://doi.org/10.1134/S0021894413040081.
- Hasheminejad, S.M., Nezami, M. and Panah, M.A. (2013), "Flutter suppression of an elastically supported plate with electro-rheological fluid core under yawed supersonic flows", Int. J. Struct. Stability Dyn., 13(1), 1250073. https://doi.org/10.1142/S0219455412500733.
- Ilyushin, A.A. (1956), "The law of plane cross sections in supersonic aerodynamics", J. Appl. Math. Mech., 20(6), 733-755.
- Khudayarov, B.A. (2008), "Numerical study of the dependence of the critical flutter speed and time of a plate on rheological parameters", Int. Appl. Mech., 44(6), 676-682. https://doi.org/10.1007/s10778-008-0078-2.
- Khudayarov, B.A. (2010), "Mathematical modelling of nonlinear flutter of viscoelastic elements and units of the flying device", Math. Model. Comput. Simul., 22(6), 111-131.
- Khudayarov, B.A. and Bandurin, N.G. (2007), "Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow", J. Appl. Mech. Tech. Phys., 48(2), 279-284. https://doi.org/10.1007/s10808-007-0036-5.
- Kiiko, I.A. and Pokazeev, V.V. (2005), "Vibrations and stability of a viscoelastic strip placed into gas flow", Report. Phys., 50(3), 158-160. https://doi.org/10.1134/1.1897993.
- Kiiko, I.A. and Pokazeev, V.V. (2013), "Flutter of viscoelastic strip", J. Eng. Math., 78(1), 213-222. doi.org/10.1007/s10665-012-9534-4.
- Liao, C.L. and Sun, Y.W. (1993), "Flutter analysis of stiffened laminated composite plates and shells in supersonic flow", AIAA J., 31(10), 1897-1905. https://doi.org/10.2514/3.11865.
- Librescu, L. and Chandiramani, N.K. (1989), "Dynamic stability of transversely isotropic viscoelastic plates", J. Sound Vib., 130(3), 467-486. https://doi.org/10.1016/0022-460X(89)90070-9
- Mahmoudkhani, S., Sadeghmanesh, M. and Haddadpour, H. (2016), "Aero-thermo-elastic stability analysis of sandwich viscoelastic cylindrical shells in supersonic airflow", Compos. Struct., 147, 185-196. https://doi.org/10.1016/j.compstruct.2016.03.020.
- Merrett, C.G. (2016), "Time to flutter theory for viscoelastic composite aircraft wings", Compos. Struct., 154, 646-659. https://doi.org/10.1016/j.compstruct.2016.07.019.
- Movchan, A.A. (1956), "On oscillations of the plate, moving in a gas", J. Appl. Math. Mech., 20, 221-222.
- Movchan, A.A. (1957), "Stability of a blade moving through gas", J. Appl. Math. Mech., 21(5), 700-706.
- Pacheco, D., Marques, F.D., Natarajan, S. and Ferreira, A. (2017), "Nonlinear finite element post-flutter analysis of multibay composite panels in supersonic regime", Compos. Struct., 180(15), 883-891. https://doi.org/10.1016/j.compstruct.2017.08.058.
- Pagani, A., Petrolo, M. and Carrera, E. (2014), "Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method", Adv. Aircraft Spacecraft Sci., 1(3), 291-310. https://doi.org/10.12989/aas.2014.1.3.291.
- Pouresmaeeli, S. Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium", Compos. Struct., 96, 405-410. https://doi.org/10.1016/j.compstruct.2012.08.051.
- Rao, G.V. and Rao, K.S. (1984), "Supersonic flutter of short panels on an elastic foundation", AIAA J., 22(6), 856-857. https://doi.org/10.2514/3.8698.
- Robinson, M.T.A. and Adali, S. (2016), "Nonconservative stability of viscoelastic rectangular plates with free edges under uniformly distributed follower force", Int. J. Mech. Sci., 107, 150-159. https://doi.org/10.1016/j.ijmecsci.2015.12.029.
- Shiau, L.C. (1992), "Supersonic flutter of composite sandwich panels", AIAA J., 30(12), 2987-2989. https://doi.org/10.2514/3.48987.
- Singha, M.K. and Mandal, M. (2008), "Supersonic flutter characteristics of composite cylindrical panels", Compos. Struct., 82(2), 295-301. https://doi.org/10.1016/j.compstruct.2007.01.007.
- Song, Z.G. and Li, F.M. (2012), "Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate", Compos. Struct., 94(2), 702-713. https://doi.org/10.1016/j.compstruct.2011.09.005.
- Song, Z.G., Li, F.M., Carrera, E. and Hagedorn, P. (2018), "A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects", J. Sound Vib., 414(3), 218-232. https://doi.org/10.1016/j.jsv.2017.11.008.
- Verlan, A.F., Eshmatov, Kh., Khudayarov, B.A. and Bobonazarov, Sh.P. (2004), "Numerical solution of nonlinear problems of the dynamics of viscoelastic systems", Elect. Model., 26(3), 3-14.
- Volmir, A.S. (1972), Nonlinear Dynamics of Plates and Shells, Science Edition, Moscow, Russia.
- Wang, X., Yang, Z., Wang, W. and Tian, W. (2017), "Nonlinear viscoelastic heated panel flutter with aerodynamic loading exerted on both surfaces", J. Sound Vib., 409(24), 306-317. https://doi.org/10.1016/j.jsv.2017.07.033
- Yazdi, A.A. (2017), "Large amplitude flutter analysis of functionally graded carbon nanotube reinforced composite plates with piezoelectric layers on nonlinear elastic foundation", Proc. Inst. Mech. Eng. Part G J. Aerospace Eng., 233(2), 533-544. https://doi.org/10.1177/0954410017736546.
- Zenkour, A.M. (2017), "Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations", Adv. Aircraft Spacecraft Sci., 4(3), 267-280. https://doi.org/10.12989/aas.2017.4.3.267.
- Zhao, H. and Cao, D. (2013), "A study on the aero-elastic flutter of stiffened laminated composite panel in the supersonic flow", J. Sound Vib., 332(19), 4668-4679. https://doi.org/10.1016/j.jsv.2013.04.006.
Cited by
- Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid vol.11, pp.9, 2019, https://doi.org/10.1142/s175882511950090x
- Numerical investigation of the effects angles of attack on the flutter of a viscoelastic plate vol.7, pp.3, 2019, https://doi.org/10.12989/aas.2020.7.3.215
- Dynamic stability and vibrations of thin-walled structures considering heredity properties of the material vol.869, 2019, https://doi.org/10.1088/1757-899x/869/5/052021
- Numerical study of nonlinear problems in the dynamics of thin-walled structural elements vol.264, 2021, https://doi.org/10.1051/e3sconf/202126405056
- Vibrations of dam-plate of a hydro-technical structure under seismic load vol.264, 2019, https://doi.org/10.1051/e3sconf/202126405057
- A generalized solution of a modified Cauchy problem of class R 2 for a hyperbolic equation of the second kind vol.1889, pp.2, 2019, https://doi.org/10.1088/1742-6596/1889/2/022121