DOI QR코드

DOI QR Code

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail (IS2M Laboratory, Faculty of Technology, Department of Mechanical Engineering, University Abou Beckr Belkaid (UABT)) ;
  • Kerboua, Bachir (Mechanical engineering Department, University Abou Beckr Belkaid (UABT))
  • 투고 : 2018.06.19
  • 심사 : 2018.12.06
  • 발행 : 2019.05.25

초록

Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.

키워드

참고문헌

  1. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Braz. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2.
  2. Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 256(5176), 1212-1214. https://doi.org/10.1126/science.265.5176.1212.
  3. Alibeigloo, A. (2014), "Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers", Compos. Struct., 118, 482-495. https://doi.org/10.1016/j.compstruct.2014.08.004.
  4. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.1016/10.12989/scs.2015.18.3.659.
  5. Arefi, M. (2015), "Nonlinear thermal analysis of a hollow functionally graded cylinder with temperature variable material properties", J. Appl. Mech. Tech. Phys., 56(2), 267-273. https://doi.org/10.1134/S0021894415020121.
  6. Arefi, M. and Arani, A.H.M. (2017), "Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments", Mech. Base. Desig. Struct. Machi., 46(6), 669-692. https://doi.org/10.1080/15397734.2018.1434002.
  7. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002.
  8. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Academ. J., 5(12), 1442-1454.
  9. Arefi, M. and Zenkour, A.M. (2017a), "Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets", Compos. Struct., 159(1), 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088.
  10. Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size dependent three-layer piezo-magnetic curved nanobeam", Acta Mechanica, 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6.
  11. Arefi, M. and Zenkour, A.M. (2017c), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 122(10), 880. https://doi.org/10.1007/s00339-017-0801-0.
  12. Arefi, M. and Zenkour, A.M. (2017d), "Wave propagation analysis of a functionally graded magneto-electro elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004.
  13. Arefi, M. and Zenkour, A.M. (2017e), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart Nano Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
  14. Arefi, M. and Zenkour, A.M. (2017f), "Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217723186.
  15. Arefi, M. and Zenkour, A.M. (2017g), "Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko's sandwich piezoelectric microbeam", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217714181.
  16. Arefi, M. and Zenkour, A.M. (2017h), "Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak's foundation", Theor. Appl. Mech. Lett., 7(3), 145-151. https://doi.org/10.1016/j.taml.2017.05.003.
  17. Arefi, M. and Zenkour, A.M. (2017i), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071.
  18. Ashrafi, B. and Hubert, P. (2006), "Modeling the elastic properties of carbon nanotube array/polymer composites", Compos. Sci. Technol., 66(3), 387-396. https://doi.org/10.1016/j.compscitech.2005.07.020.
  19. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. https://doi.org/10.12989/anr.2014.2.4.199.
  20. Bakhti, K., Kaci, A., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. https://doi.org/10.12989/scs.2013.14.4.335.
  21. Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling of graded porous GPLreinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2017.1400622.
  22. Barzoki, A.A.M., Loghman, A. and Arani, A.G. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., 53(3), 497-517. https://doi.org/10.12989/sem.2015.53.3.497.
  23. Bensaid, I. and Bekhadda, A. (2018), "Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams", Adv. Mater. Res., 7(1), 1-16. https://doi.org/10.12989/amr.2018.7.1.001.
  24. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
  25. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.
  26. Bidgoli, M.R., Karimi, M.S. and Arani, A.G. (2015), "Viscous fluid induced vibration and instability of FGCNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., 19(3), 713- 733. https://doi.org/10.12989/scs.2015.19.3.713.
  27. Ebrahimi, F. and Fardshad, R.E. (2018), "Dynamic modeling of nonlocal compositionally graded temperature-dependent beams", Adv. Aircraft Spacecraft Sci., 5(1), 141-164. https://doi.org/10.12989/aas.2018.5.1.141.
  28. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  29. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36(11), 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.
  30. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymercarbon nanotube composites", Comput. Method. Appl. Mech. Eng., 193(17-20), 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025.
  31. Hadji, L., Zouatnia, N., Mezian, A.A.M. and Kassoul, A. (2015), "A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation", Earthq. Struct., 13(5), 509-518. https://doi.org/10.12989/eas.2015.13.5.509.
  32. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  33. Hu, N., Fukunaga, H., Lu, C., Kameyama, M. and Yan, B. (2005), "Prediction of elastic properties of carbon nanotube reinforced composites", Proc. Royal. Soc. A Math Phys. Eng. Sci., 461(2058), 1685-1710. https://doi.org/10.1098/rspa.2004.1422.
  34. Kaci, A., Tounsi, A., Bakhti, K. and Adda Bedia, E.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., 12(6), 491-504. https://doi.org/10.12989/scs.2012.12.6.491.
  35. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
  36. Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotubereinforced composite beams", Mech. Adv. Mater. Struct., 20(1), 28-37. https://doi.org/10.1080/15376494.2011.581412.
  37. Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos Part B Eng., 105, 176-87. https://doi.org/10.1016/j.compositesb.2016.09.001.
  38. Kiani, Y. (2016), "Thermal postbuckling of temperature dependent sandwich beams with carbon nanotube reinforced face sheets", J. Therm. Stresses, 39(9), 1098-110. https://doi.org/10.1080/01495739.2016.1192856.
  39. Kiani, Y. and Eslami, M.R, (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4.
  40. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  41. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotubereinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003.
  42. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  43. Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica, 51(9), 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.
  44. Nguyen, V.T., Nguyen, D.K., Ngo, D.T., Phuong, T. and Nguyen, D.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Therm. Stresses, 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.
  45. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modelling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63(11), 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
  46. Phung-Van, P., Abdel-Wahab, A., Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.
  47. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031.
  48. Reddy, J.N. (2002), EnergyPrinciples and Variational Methods in Applied Mechanics, John Wiley & Sons Inc., New York, U.S.A.
  49. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  50. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011.
  51. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002.
  52. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  53. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
  54. Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: Modelling and characterization", J. Phys. A Appl. Phys., 36(5), 573-582. https://doi.org/10.1088/0022-3727/36/5/323
  55. Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
  56. Vo-Duy, T., HO-Huu, V. and Nguyen-Thoi, T. (2019), "Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method", Front. Struct. Civ. Eng., 13(2), 324-336. https://doi.org/10.1007/s11709-018-0466-6.
  57. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50(8), 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005.
  58. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  59. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118.
  60. Xu, Y., Ray, G. and Abdel-Magid, B. (2006), "Thermal behavior of single-walled carbon nanotube polymermatrix composites", Compos. Part A Appl. Sci. Manufact., 37(1), 114-121. https://doi.org/10.1016/j.compositesa.2005.04.009.
  61. Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG CNTRC beams", J. Struct. Stabil. Dyn., 15(8), 1540017. https://doi.org/10.1142/S0219455415400179.
  62. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  63. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  64. Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbonnanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1-2), 51-57. https://doi.org/10.1016/j.msea.2006.10.054.

피인용 문헌

  1. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389