DOI QR코드

DOI QR Code

A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams

  • Bekhadda, Ahmed (IS2M Laboratory, Faculty of Technology, Mechanical engineering Department, University Abou Beckr Belkaid (UABT)) ;
  • Cheikh, Abdelmadjid (IS2M Laboratory, Faculty of Technology, Mechanical engineering Department, University Abou Beckr Belkaid (UABT)) ;
  • Bensaid, Ismail (IS2M Laboratory, Faculty of Technology, Mechanical engineering Department, University Abou Beckr Belkaid (UABT)) ;
  • Hadjoui, Abdelhamid (IS2M Laboratory, Faculty of Technology, Mechanical engineering Department, University Abou Beckr Belkaid (UABT)) ;
  • Daikh, Ahmed A. (Mechanics of structures and solids Laboratory, Department of Mechanical Engineering, Faculty of Technology, University of Sidi Bel Abbes)
  • 투고 : 2018.07.31
  • 심사 : 2019.02.18
  • 발행 : 2019.05.25

초록

In this work, a novel first-order shear deformation beam theory is applied to explore the vibration and buckling characteristics of thick functionally graded beams. The material properties are assumed to vary across the thickness direction in a graded form and are estimated by a power-law model. A Fourier series-based solution procedure is implemented to solve the governing equation derived from Hamilton's principle. The obtained results of natural frequencies and buckling loads of functionally graded beam are checked with those supplied in the literature and demonstrate good achievement. Influences of several parameters such as power law index, beam geometrical parameters, modulus ratio and axial load on dynamic and buckling behaviors of FGP beams are all discussed.

키워드

참고문헌

  1. Attia, A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
  2. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  3. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. http://doi.org/10.12989/sem.2016.60.4.707.
  4. Barati, M.R. and Shahverdi, H. (2017a), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788.
  5. Barati, M.R. and Shahverdi, H. (2017b), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Flui Struct, 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.
  6. Barati, M.R. and Shahverdi, H. (2017c), "Small-scale effects on the dynamic response of inhomogeneous nanobeams on elastic substrate under uniform dynamic load", Eur. Phys. J. Plus, 132(4), 167. https://doi.org/10.1140/epjp/i2017-11441-9.
  7. Barati, M.R. and Shahverdi, H. (2017d), "Hygro-thermal vibration analysis of graded double-refined nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004.
  8. Barati, M.R. and Shahverdi, H. (2017e), "Vibration analysis of porous functionally graded nanoplates", J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
  9. Barati, M.R. and Zenkour, A.M. (2017g), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.
  10. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141, 203-212. https://doi.org/10.1016/j.compstruct.2016.01.056.
  11. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2017f), "Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory", Mech. Adv. Mater. Struct., 24(12), 987-998. https://doi.org/10.1080/15376494.2016.1196799.
  12. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  13. Bensaid, I. and Bekhadda, A. (2018), "Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams", Adv. Mater. Res., 7(1), 363-378. http://doi.org/10.12989/amr.2018.7.1.001.
  14. Bensaid, I., Cheikh, A., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater. Res., 6(1), 13-26. https://doi.org/10.12989/amr.2017.6.1.013.
  15. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. http://doi.org/10.12989/scs.2015.18.2.409.
  16. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386.
  17. Bouremana, M, Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. http://doi.org/10.12989/scs.2013.15.5.467.
  18. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4.
  19. Chian Thai, H., Zenkour, A.M., Abdel Wahab, M. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066.
  20. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4.
  21. Ebrahimi, F. and Barati, M.R. (2016b), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A., 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2.
  22. Ebrahimi, F. and Barati, M.R. (2016c), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y.
  23. Ebrahimi, F. and Barati, M.R. (2016d), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1.
  24. Ebrahimi, F. and Barati, M.R. (2016e), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001.
  25. Ebrahimi, F. and Barati, M.R. (2016f), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556.
  26. Ebrahimi, F. and Barati, M.R. (2016g), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 1-16. https://doi.org/10.1007/s40430-016-0551-5.
  27. Ebrahimi, F. and Barati, M.R. (2017a), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058.
  28. Ebrahimi, F. and Barati, M.R. (2017b), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092.
  29. Hadji, L., Daouadji, T.H Ait Amar Meziane, M., Tlidji, Y. and Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. http://doi.org/10.12989/sem.2016.57.2.315.
  30. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. http://doi.org/10.12989/sem.2018.65.5.621.
  31. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  32. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
  33. Malikan, M. (2017), "Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Mode., 48, 196-207. https://doi.org/10.1016/j.apm.2017.03.065.
  34. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. http://doi.org/10.12989/scs.2015.18.3.793.
  35. Nguyen, T.K. (2015), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
  36. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  37. Ould, L.L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech.Bas. Des. Struct., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.
  38. Pradhan, K.K. and Chakraverty, S.S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams beams by Rayleigh-Ritz method", Compos. Part B Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
  39. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc., New York, U.S.A.
  40. Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001.
  41. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
  42. Simsek, M. (2010a), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  43. Simsek, M. (2010b), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030.
  44. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  45. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.jsv.2011.11.020.
  46. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London, U.K.
  47. Thai, H.T. and Choi, A. (2013a), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
  48. Thai, H.T. and Choi, A. (2013b), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
  49. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
  50. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  51. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013a), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  52. Vo, T.P., Thai, H.T. and Aydogdu, M. (2017), "Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory", Compos. Struct., 178, 406-414. https://doi.org/10.1016/j.compstruct.2017.07.022
  53. Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccan., 49, 155-168. https://doi.org/10.1007/s11012-013-9780-1.
  54. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  55. Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Tech., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023.
  56. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. http://doi.org/10.12989/sem.2017.64.2.145.

피인용 문헌

  1. Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment vol.11, pp.7, 2019, https://doi.org/10.3390/app11073250
  2. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389