DOI QR코드

DOI QR Code

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2019.03.03
  • Accepted : 2019.04.19
  • Published : 2019.05.25

Abstract

In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Abouhamze, M., Aghdam, M.M. and Alijani, F. (2007), "Bending analysis of symmetrically laminated cylindrical panels using the extended Kantorovich method", Mech. Adv. Mater. Struct., 14(7), 523-530. https://doi.org/10.1080/15376490701585967.
  2. Aghdam, M.M. and Mohammadi, M. (2009), "Bending analysis of thick orthotropic sector plates with various loading and boundary conditions", Compos. Struct., 88, 212-218. https://doi.org/10.1016/j.compstruct.2008.03.038.
  3. Aghdam, M.M., Mohammadi, M. and Erfanian, V. (2007), "Bending analysis of thin annular sector plates using extended Kantorovich method", Thin Wall. Struct., 45, 983-990. https://doi.org/10.1016/j.tws.2007.07.012.
  4. AkbariAlashti, R. and Khorsand, M. (2012) "Tree-dimensional dynamo-thermo-elastic of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled", Int. J. Press. Ves. Pip., 97, 49-67. https://doi.org/10.1016/j.ijpvp.2012.06.006.
  5. Alibeigloo, A. and Tahrimaslak, A. (2018), "Three dimensional transient analysis of FGM rectangular sandwich late subjected to thermal loading", 12th International Conference on Sandwich Structures, Lausanne, Switzerland, August.
  6. Arani, A.G., Haghparast, E. and Zarei, H.B. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529.
  7. Arani, A.G., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011b), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178.
  8. Arani, A.G., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magnetothermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.
  9. Araujo, A.L., Carvalho, V.S., Soares, C.M., Belinha, J. and Ferreira, A.J.M. (2016), "Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators", Compos Struct., 151, 91-98. https://doi.org/10.1016/j.compstruct.2016.03.013.
  10. Arefi, M. and Zenkour, A.M. (2017), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071.
  11. Bahaadini, R., Saidi, A.R. and Hosseini, M. (2019) "Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory", J. Vib. Control, 25(1), 203-218. https://doi.org/10.1177/1077546318774242.
  12. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete,18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  13. Calleja, M., Kosaka, P., San Paulo, A. and Tamayo, J. (2012), "Challenges for nanomechanical sensors in biological detection", Nanoscale, 49(4), 25-38. DOI: 10.1039/C2NR31102J.
  14. Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048.
  15. Ghorbanpour Arani, A., Mohammadimehr, M., Saidi, A.R., Shogaei, S. and Arefmanesh, A. (2011a), "Thermal buckling analysis of double-walled carbon nanotubes considering the small-scale length effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 225(1), 248-256. https://doi.org/10.1177/09544062JMES1975.
  16. Jana, P. and Bhaskar, K. (2006), "Stability analysis of simplysupported rectangular plates under nonuniform uniaxial compression using rigorous and approximate plane stress solutions", Thin Wall. Struct., 44, 507-516. https://doi.org/10.1016/j.tws.2006.04.009.
  17. Jia, Y. and Sun, K. (2006), "Thick film wireless and powerless strain sensor", Smart Struct. Mater., 6174, 299-309. https://doi.org/10.1117/12.660365.
  18. Jones, R. and Milne, B.J. (1976), "Application of extended Kantorovich method to the vibration of clamped rectangular plates", J. Sound Vib., 45(3), 309-316. https://doi.org/10.1016/0022-460X(76)90390-4.
  19. Joodaky, A. and Joodaky, I. (2015), "A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundation", Int. J. Mech. Sci., 100, 322-327. https://doi.org/10.1016/j.ijmecsci.2015.06.025.
  20. Kantorovich, L.V. and Krylov, V.I. (1960), "Approximate method of higher analysis", Soc. Indus. Appl. Math., 2(4), 299-300. https://doi.org/10.1090/S0002-9904-1960-10408-9.
  21. Kiani, Y. and Mirzaei, M. (2018), "Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method", Aerosp. Sci. Technol., 77, 388-398. https://doi.org/10.1016/j.ast.2018.03.022.
  22. Kim, H.S., Cho, M. and Kim, G.I.. (2000), "Free-edge strength analysis in composite laminates by the extended Kantorovich method", Compos. Struct., 49, 229-235. https://doi.org/10.1016/S0263-8223(99)00138-5.
  23. Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273.
  24. Li, D., Deng, Z., Xiao, H. and Peng, J. (2018), "Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core", Thin Wall. Struct., 122, 8-16. https://doi.org/10.1016/j.tws.2017.09.033.
  25. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054.
  26. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B, 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030.
  27. Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37(1), 1-15. DOI:10.3906/muh-1201-17.
  28. Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018b), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513.
  29. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.M.A., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018c), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405.
  30. Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M. (2018a), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022.
  31. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electroelastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513.
  32. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using Eshelby-Mori-Tanaka approach", J. Solid Mech., 7(2), 173-190.
  33. Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017a), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.
  34. Mohammadimehr, M., Zarei, H.B., Parakandeh, A. and Arani, A.G. (2017b), "Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., 64(3), 361-379. https://doi.org/10.12989/sem.2017.64.3.361.
  35. Moradi Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.
  36. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  37. Nasihatgozar, M., Daghigh, V., Eskandari, M., Nikbin, K. and Simoneau, A. (2016), "Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes", Int. J. Mech. Sci., 107, 69-79. https://doi.org/10.1016/j.ijmecsci.2016.01.010.
  38. Sodano, H.A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezo-electric materials", Shock Vib. Dig., 36(3), 197-205. https://doi.org/10.1177/0583102404043275
  39. Studzinski, R., Pozorski, Z. and Garstecki, A. (2015), "Structural behavior of sandwich panels with asymmetrical boundary conditions", J. Constr. Steel Res., 104, 227-234. https://doi.org/10.1016/j.jcsr.2014.10.011.
  40. Tomar, S.S. and Talha, M. (2019), "Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates", Compos. Part B: Eng., 163, 779-793. https://doi.org/10.1016/j.compositesb.2019.01.035.
  41. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  42. Tornabene, F. and Brischetto, S. (2018), "3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells", Thin Wall. Struct., 129, 94-124. https://doi.org/10.1016/j.tws.2018.03.021.
  43. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2015), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B Eng., 89(1), 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  44. Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119(1), 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005.
  45. Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53(6), 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007.
  46. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
  47. Xiang, X.M., You, Z. and Lu, G. (2018), "Rectangular sandwich plates with Miura-ori folded core under quasi-static loadings", Compos. Struct., 195, 359-374. https://doi.org/10.1016/j.compstruct.2018.04.084.
  48. Yuan, S. and Jin, Y. (1998), "Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method", Comput. Struct., 66(6), 861-867. https://doi.org/10.1016/S0045-7949(97)00111-9.
  49. Yun, B.K., Park, Y.K., Lee, M., Lee, N., Jo, W., Lee, S. and Jung, J.H. (2014), "Lead-free $LiNbO_3$ nanowirebased nanocomposite for piezoelectric power generation", Nanosc. Res. Lett., 9(4), 1-7. https://doi.org/10.1186/1556-276X-9-4.
  50. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  51. Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B: Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037.

Cited by

  1. Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors vol.25, pp.3, 2019, https://doi.org/10.12989/cac.2020.25.3.215
  2. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  3. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
  4. Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm vol.26, pp.6, 2019, https://doi.org/10.12989/sss.2020.26.6.721
  5. Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2019, https://doi.org/10.12989/cac.2021.27.2.111
  6. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2019, https://doi.org/10.1007/s00419-021-01973-7
  7. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  8. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2019, https://doi.org/10.12989/amr.2021.10.3.169