References
- Abdulhaleem, K.N., Gulsan, M.E. and C evik, A. (2018), "Mechanical behavior of steel fiber-reinforced self- compacting concrete corbels at elevated temperatures", Struct. Concrete, 19(2), 1-14. https://doi.org/10.1002/suco.201700034.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. DOI: 10.12989/cac.2018.21.1.047.
- Basaran, C. and Nie, S. (2004), "An irreversible thermodynamics theory for damage mechanics of solids", Int. J. Damage Mech., 13(3), 205-223. https://doi.org/10.1177/1056789504041058.
- Bazant, P.Z. and Jirasek, M. (2002), "Non local integral formulations of plasticity and damage: Survey and progress", J. Eng. Mech., 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119).
- Bazant, Z.P. and Xiang, Y. (1997), "Size effect in compression fracture: splitting crack band propagation", J. Eng. Mech., 123(2), 162-172. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(162).
- Carpinteri, A., Chiaia, B. and Ferro, G. (1995), "Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder", Mater. Struct., 28, 311-317. https://doi.org/10.1007/BF02473145
- Del Viso, J.R., Carmoa, J.R. and Ruiz, G. (2008), "Shape and size effects on the compressive strength of high strength concrete", Cement Concrete Res., 38, 386-395. https://doi.org/10.1016/j.cemconres.2007.09.020.
- Eren Gulsan, M., Abdulhaleem, K.N., Kurtoglu, A.E. and Cevik, A. (2018), "Size effect on strength of Fiber-Reinforced Self-Compacting concrete (SCC) after exposure to high temperatures", Comput. Concrete, 21(6), 681-695. https://doi.org/10.12989/cac.2018.21.6.681.
- Ju, J.W. (1989), "On energy based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solid. Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2.
- Kachanov, L. (1958), "Time of the rupture process under creep conditions", Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnich-eskikh Nauk, 8, 26-31.
- Kale, S. and Ostoja- Starzewski, M. (2017), "Representing stochastic damage evolution in disordered media as a jump Markov process using the fiber bundle model", Int. J. Damage Mech., 26(1), 147-161. https://doi.org/10.1177/1056789516650249.
- Kallel, H., Carre, H., Laborderie, C., Masson, B. and Tran, N.C. (2018), "Evolution of mechanical properties of concrete with temperature and humidity at high temperatures", Cement Concrete Compos., 91, 59-66. https://doi.org/10.1016/j.cemconcomp.2018.04.014.
- Lemaitre, J. and Chaboche, J. (1978), "Aspects phenomenologiques de la rupture par endommagement", J. Mecanique Appliquee, 2(3), 317-365.
- Liang, J.F., Yang, Z., Yi, P.H. andWang, J.B. (2017), "Stress-strain relationship for recycled aggregate concrete after exposure to elevated temperatures", Comput. Concrete, 19(6), 609-615. https://doi.org/10.12989/cac.2017.19.6.609.
- Limam, O., Aidi, M. and Zenzri, H. (2014), "Structural nominal concrete strength derived by statistical mechanics", Physica A, Statist. Mech. Appl., 395, 48-57. https://doi.org/10.1016/j.physa.2013.10.046.
- Masad, N. (2013), "Meso scale model for simulations of concrete subjected to cryogenic temperatures", PhD Thesis, Texas University.
- Mazars, J. (1986), "A description of micro and macroscale damage of concrete structures", Eng. Fract. Mech., 25(5-6), 729-737. https://doi.org/10.1016/0013-7944(86)90036-6.
- Mazars, J., Pijaudier-Cabot, G. and Saouridis, C. (1991), "Size effect and continuous damage in cementitious materials", Int. J. Fract., 51,159-173. https://doi.org/10.1007/BF00033976.
- Miled, K., Limam, O. and Sab, K. (2012), "A probabilistic mechanical model for prediction of aggregates' size distribution effect on concrete compressive strength", Physica A, Statist. Mech. Appl., 391, 3366-3378. https://doi.org/10.1016/j.physa.2012.01.051.
- Miura, T. (1989), "The properties of concrete at very low temperatures", Mater. Struct., 22, 243-254. https://doi.org/10.1007/BF02472556.
- Muller, H., Anders, I., Breiner, R. and Vogel, M. (2013), "Concrete: treatment of types and properties in fib model code 2010", Struct. Concrete, 14(4), 320-334. https://doi.org/10.1002/suco.201200048.
- Nandan, H. and Singh, M.P. (2014), "Effects of thermal environment on structural frequencies, Part I A simulation study", Eng. Struct., 81, 480-490. https://doi.org/10.1016/j.engstruct.2014.06.046.
- Nemat Nasser, S. and Horii, H. (1982), "Compression induced non planar crack extension with application to splitting", J. Geophys. Res., 87, 6805-6821. https://doi.org/10.1029/JB087iB08p06805.
- Ostoja-Starzewski, M. (1998), "Damage in a random microstructure: Size effects, fractals, and entropy maximization", Appl. Mech. Rev., 42(11), 202-212. doi:10.1115/1.3152391.
- Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Non local damage theory", J. Eng. Mech., 113, 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512).
- Rinaldi, A. and Mastilovic, S. (2014), "The Krajcinovic approach to model size dependent fracture in quasi brittle solids", Mech. Mater., 71, 21-33. https://doi.org/10.1016/j.mechmat.2014.01.005.
- Shoukry, S.N., William, G.W., Downie, B. and Riad, M.Y. (2011), "Effect of moisture and temperature on the mechanical properties of concrete", Constr. Build. Mater., 25, 688-696. https://doi.org/10.1016/j.conbuildmat.2010.07.020.
- Pijaudier-Cabot, G., Reynouard, J.M. and Torrenti, J.M. (2013), Mechanical Behavior of Concrete, ISTE and Wiley.
- Tsallis, C. (2009), "Computational applications of non-extensive statistical mechanics", J. Comput. Appl. Math., 227, 51-58. https://doi.org/10.1016/j.cam.2008.07.030.
- Vu, C.C., Weiss, J., Ple, O., Amitranoand, D. and Vandembroucq, D. (2018), "Revisiting statistical size effects on compressive failure of heterogeneous materials, with a special focus on concrete", J. Mech. Phys. Solid., 121, 47-70. https://doi.org/10.1016/j.jmps.2018.07.022.
- Wang, H., Tan, G., Wang, W. and Liu, Z. (2018), "Effect of temperature and spring-mass systems on modal properties of Timoshenko concrete beam", Struct. Eng. Mech., 65(4), 389-400. https://doi.org/10.12989/sem.2018.65.4.389.
- Yu, T.Q., Miao, X.S., Xiong, J.M., Jiang, H. and Lee, H. (1989), "An orthotropic damage model for concrete at different temperatures", Eng. Fract. Mech., 32(5), 715-786. https://doi.org/10.1016/0013-7944(89)90174-4.
Cited by
- Flexural strength of concrete-galvalume composite beam under elevated temperatures vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.013