Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities
References
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E. and Zheng, X. (2015), TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J, Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043.
- Arangio, S. and Bontempi, F. (2015), "Structural health monitoring of a cable-stayed bridge with Bayesian neural networks", Struct. Infrastruct. Eng., 11(4), 575-587. https://doi.org/10.1080/15732479.2014.951867.
- Cao, Y., Xiang, H. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", China Civil Eng. J., 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1).
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learningbased crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
- Chen, C., Wu, W., Liu, C. and Lai, G. (2016), "Damage detection of a cable-stayed bridge based on the variation of stay cable forces eliminating environmental temperature effects", Smart Struct. Syst., 17(6), 859-880. http://dx.doi.org/10.12989/sss.2016.17.6.859.
- Chen, K.F. and Mei, S.L. (2010), "Composite interpolated fast fourier transform with the hanning window", IEEE T. Instrument.Measurement, 59(6), 1571-1579. DOI: 10.1109/TIM.2009.2027772.
- Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer, B. F. and Seo, J.W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., 6(5-6), 461-480. http://dx.doi.org/10.12989/sss.2010.6.5_6.461.
- Cho, S., Lynch, J.P., Lee, J. and Yun, C.B. (2010), "Development of an automated wireless tension force estimation system for cable-stayed bridges", J. Intel. Mat. Syst. Str., 21(3), 361-376. https://doi.org/10.1177/1045389X09350719.
- Cho, S., Yim, J., Shin, S.W., Jung, H., Yun, C.B. and Wang, M.L. (2013), "Comparative field study of cable tension measurement for a cable-stayed bridge", J. Bridge Eng., 18(8), 748-757. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000421.
- Dekel, O., Ran, G.B., Shamir, O. and Xiao, L. (2012), "Optimal distributed online prediction using mini-batches", J. Mach. Learn. Res., 13(1), 165-202.
- Deng, L. and Yu, D. (2014), Deep learning: methods and applications. Foundations and Trends(R) in Signal Processing, 7(3-4), 197-387. https://doi.org/10.1561/2000000039
- Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng.Mech., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778).
- Ding, Y., An, Y. and Wang, C. (2016), "Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge", Smart Struct. Syst., 17(6), 1107-1127. http://dx.doi.org/10.12989/sss.2016.17.6.1107.
- Duan, Y.F., He, K., Zhang, H., Ting, E.C., Wang, C.Y., Chen, S.K., and Wang, R.Z. (2014), "Entire-process simulation of earthquake-induced collapse of a mockup cable-stayed bridge by Vector Form Intrinsic Finite Element (VFIFE) method", Adv. Struct. Eng., 17(3), 347-360. https://doi.org/10.1260/1369-4332.17.3.347.
- Duan, Y., Tao, J., Zhang, H., Wang, S. and Yun, C. (2019), "Realtime hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., 26(1), e2277. https://doi.org/10.1002/stc.2277.
- Duan, Y.F., Wang, S.M., Wang, R.Z., Wang, C., Shih, J.Y. and Yun, C.B. (2018), "Vector form intrinsic finite-element analysis for train and bridge dynamic interaction", J. Bridge Eng., 23(1), 04017126. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001171.
- Duan, Y.F., Wang, S.M., Wang, R.Z., Wang, C.Y. and Ting, E.C. (2017), "Vector form intrinsic finite element based approach to simulate crack propagation", J. Mechanics, 33(6), 1-16. https://doi.org/10.1017/jmech.2017.85.
- Duan, Y., Wang, S. and Yau, J. (2018), "Vector form intrinsic finite element method for analysis of train-bridge interaction problems considering the coach-coupler effect", Int. J. Struct. Stab. Dynam., 1950014. https://doi.org/10.1142/S0219455419500147.
- Duan, Y.F., Zhang, R., Dong, C.Z., Luo, Y.Z., Or, S.W., Zhao, Y., and Fan, K.Q. (2016), "Development of Elasto-Magneto-Electric (EME) sensor for in-service cable force monitoring", Int. J. Struct. Stab. Dynam., 16(4), S68-S78. https://doi.org/10.1142/S0219455416400162.
- Duan, Y.F., Zhang, R., Zhao, Y., Or, S.W., Fan, K.Q. and Tang, Z. F. (2011), "Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel structures in railway infrastructures", J. Zhejiang Univ. -Sci. A, 12(12), 895-901. https://doi.org/10.1631/jzus.A11GT007
- Duan, Y.F., Zhang, R., Zhao, Y., Or, S.W., Fan, K.Q. and Tang, Z. F. (2012), "Steel stress monitoring sensor based on elastomagnetic effect and using magneto-electric laminated composite", J. Appl. Phys., 111(7), 68. https://doi.org/10.1063/1.3679420.
- Erhan, D., Bengio, Y., Courville, A. and Vincent, P. (2009), "Visualizing higher-layer features of a deep network", University of Montreal, 1341(3), 1.
- Fukushima, K. (1980), "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position", Biol. Cybern., 36(4), 193-202. https://doi.org/10.1007/BF00344251
- Guo, J., Xie, X., Bie, R. and Sun, L. (2014), "Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks", Personal & Ubiquitous Computing, 18(8), 1977-1987. https://doi.org/10.1007/s00779-014-0800-5
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification", International conference on computer vision, 1026-1034.
- Hubel, D.H. and Wiesel, T.N. (1968), "Receptive fields and functional architecture of monkey striate cortex", J. Physiology, 195(1), 215-243. https://doi.org/10.1113/jphysiol.1968.sp008455.
- Ioffe, S. and Szegedy, C. (2015), "Batch normalization: accelerating deep network training by reducing internal covariate shift", International conference on machine learning, 448-456.
- Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S., Jung, H., Yun, C., Spencer, B.F. and Agha, G.A. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5), 439-459. http://dx.doi.org/10.12989/sss.2010.6.5_6.439.
- Jin, S., Cho, S., Jung, H., Lee, J. and Yun, C. (2014), "A new multi-objective approach to finite element model updating", J. Sound Vib., 333(11), 2323-2338. https://doi.org/10.1016/j.jsv.2014.01.015.
- Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Quarterly J. Roy. Meteorol. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707.
- Kim, H., Ahn, E., Shin, M. and Sim, S. (2018), "Crack and noncrack classification from concrete surface images using machine learning", Struct. Health Monit., 147592171876874. https://doi.org/10.1177/1475921718768747.
- Kim, J., Ho, D., Nguyen, K., Hong, D., Shin, S.W., Yun, C.B. and Shinozuka, M. (2013), "System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network", Smart Struct. Syst., 11(5), 533-553. http://dx.doi.org/10.12989/sss.2013.11.5.533.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), ImageNet Classification with Deep Convolutional Neural Networks. Paper presented at the neural information processing systems.
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436. https://doi.org/10.1038/nature14539
- LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R. E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Comput., 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- Lee, J., Lee, J.W., Yi, J., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280(3), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003.
- Liang, Z.J., Liao, S.B. and Hu, B.Z. (2018), "3D convolutional neural networks for dynamic sign language recognition", Comput. J., 61(11), 1724-1736. https://doi.org/10.1093/comjnl/bxy049.
- Lin, Y., Nie, Z. and Ma, H. (2017), "Structural damage detection with automatic feature-extraction through deep learning", Comput.-Aided Civil Infrastruct. Eng., 32(12), 1025-1046. https://doi.org/10.1111/mice.12313.
- Matsuoka, K. (1992), "Noise injection into inputs in backpropagation learning", Syst. Man Cybernetics, 22(3), 436-440. DOI: 10.1109/21.155944.
- Midas (2017), MIDAS Information Technology Co., Ltd., Korea. http://www.MidasUser.com.
- Miikkulainen, R., Liang, J.Z., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A. and Duffy, N. (2017), Evolving Deep Neural Networks. arXiv: Neural and Evolutionary Computing, 293-312.
- Min, J., Park, S., Yun, C.B., Lee, C. and Lee, C. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity", Eng. Struct., 39, 210-220. https://doi.org/10.1016/j.engstruct.2012.01.012.
- Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. https://doi.org/10.1016/j.engstruct.2018.05.109.
- Scherer, D., Muller, A. and Behnke, S. (2010), Evaluation of pooling operations in convolutional architectures for object recognition, Paper presented at the international conference on artificial neural networks.
- Sekhar, A.S. (2004), "Crack identification in a rotor system: a model-based approach", J. Sound Vib., 270(4), 887-902. https://doi.org/10.1016/S0022-460X(03)00637-0.
- Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: Fundamentals and application to design, Book published by John Willey & Sons Inc, 605.
- Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014), "Dropout: a simple way to prevent neural networks from overfitting", J. Mach. Learn. Res., 15(1), 1929-1958.
- Ting, E.C., Shih, C. and Wang, Y. (2004), "Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element", J. Mechanics, 20(2), 113-122. https://doi.org/10.1017/S1727719100003336.
- Wang, S.M. (2018), Dynamic analysis of wind-train-rail-long span bridge based on the vector form intrinsic finite element. Zhejiang University.
- Yim, J., Wang, M. L., Shin, S.W., Yun, C.B., Jung, H., Kim, J. and Eem, S. (2013), "Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges", Smart Struct. Syst., 12(3-4), 465-482. https://doi.org/10.12989/sss.2013.12.3_4.465.
- Yuan, X., Chen, C., Duan, Y. and Qian, R. (2018), "Elastoplastic analysis with fine beam model of vector form intrinsic finite element", Adv. Struct. Eng., 21(3), 365-379. https://doi.org/10.1177/1369433217718984.
- Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6.
- Zhang, P., Tang, Z., Duan, Y., Yun, C.B. and Lv, F. (2018), "Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable", Smart Struct. Syst., 22(4), 481-493. https://doi.org/10.12989/sss.2018.22.4.481.
- Zhang, R., Duan, Y., Or, S.W. and Zhao, Y. (2014), "Smart elastomagneto-electric (EME) sensors for stress monitoring of steel cables: design theory and experimental validation", Sensors, 14(8), 13644-13660. https://doi.org/10.3390/s140813644.
- Zhang, R., Duan, Y., Zhao, Y. and He, X. (2018), "Temperature compensation of Elasto-Magneto-Electric (EME) sensors in cable force monitoring using BP neural network", Sensors, 18(7), 2176. https://doi.org/10.3390/s18072176.
Cited by
- Identification of Grout Sleeve Joint Defect in Prefabricated Structures Using Deep Learning vol.7, 2020, https://doi.org/10.3389/fmats.2020.00298
- Damage identification using deep learning and long-gauge fiber Bragg grating sensors vol.59, pp.33, 2019, https://doi.org/10.1364/ao.405110
- Structural Health Monitoring in Composite Structures: A Comprehensive Review vol.22, pp.1, 2019, https://doi.org/10.3390/s22010153