DOI QR코드

DOI QR Code

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Chen, Qianyi (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Zhang, Hongmei (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Yun, Chung Bang (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Wu, Sikai (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Zhu, Qi (College of Civil Engineering and Architecture, Zhejiang University)
  • 투고 : 2019.01.30
  • 심사 : 2019.04.15
  • 발행 : 2019.05.25

초록

In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Central Universities

참고문헌

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E. and Zheng, X. (2015), TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
  2. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J, Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043.
  3. Arangio, S. and Bontempi, F. (2015), "Structural health monitoring of a cable-stayed bridge with Bayesian neural networks", Struct. Infrastruct. Eng., 11(4), 575-587. https://doi.org/10.1080/15732479.2014.951867.
  4. Cao, Y., Xiang, H. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", China Civil Eng. J., 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1).
  5. Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learningbased crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
  6. Chen, C., Wu, W., Liu, C. and Lai, G. (2016), "Damage detection of a cable-stayed bridge based on the variation of stay cable forces eliminating environmental temperature effects", Smart Struct. Syst., 17(6), 859-880. http://dx.doi.org/10.12989/sss.2016.17.6.859.
  7. Chen, K.F. and Mei, S.L. (2010), "Composite interpolated fast fourier transform with the hanning window", IEEE T. Instrument.Measurement, 59(6), 1571-1579. DOI: 10.1109/TIM.2009.2027772.
  8. Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer, B. F. and Seo, J.W. (2010), "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses", Smart Struct. Syst., 6(5-6), 461-480. http://dx.doi.org/10.12989/sss.2010.6.5_6.461.
  9. Cho, S., Lynch, J.P., Lee, J. and Yun, C.B. (2010), "Development of an automated wireless tension force estimation system for cable-stayed bridges", J. Intel. Mat. Syst. Str., 21(3), 361-376. https://doi.org/10.1177/1045389X09350719.
  10. Cho, S., Yim, J., Shin, S.W., Jung, H., Yun, C.B. and Wang, M.L. (2013), "Comparative field study of cable tension measurement for a cable-stayed bridge", J. Bridge Eng., 18(8), 748-757. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000421.
  11. Dekel, O., Ran, G.B., Shamir, O. and Xiao, L. (2012), "Optimal distributed online prediction using mini-batches", J. Mach. Learn. Res., 13(1), 165-202.
  12. Deng, L. and Yu, D. (2014), Deep learning: methods and applications. Foundations and Trends(R) in Signal Processing, 7(3-4), 197-387. https://doi.org/10.1561/2000000039
  13. Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng.Mech., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778).
  14. Ding, Y., An, Y. and Wang, C. (2016), "Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge", Smart Struct. Syst., 17(6), 1107-1127. http://dx.doi.org/10.12989/sss.2016.17.6.1107.
  15. Duan, Y.F., He, K., Zhang, H., Ting, E.C., Wang, C.Y., Chen, S.K., and Wang, R.Z. (2014), "Entire-process simulation of earthquake-induced collapse of a mockup cable-stayed bridge by Vector Form Intrinsic Finite Element (VFIFE) method", Adv. Struct. Eng., 17(3), 347-360. https://doi.org/10.1260/1369-4332.17.3.347.
  16. Duan, Y., Tao, J., Zhang, H., Wang, S. and Yun, C. (2019), "Realtime hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., 26(1), e2277. https://doi.org/10.1002/stc.2277.
  17. Duan, Y.F., Wang, S.M., Wang, R.Z., Wang, C., Shih, J.Y. and Yun, C.B. (2018), "Vector form intrinsic finite-element analysis for train and bridge dynamic interaction", J. Bridge Eng., 23(1), 04017126. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001171.
  18. Duan, Y.F., Wang, S.M., Wang, R.Z., Wang, C.Y. and Ting, E.C. (2017), "Vector form intrinsic finite element based approach to simulate crack propagation", J. Mechanics, 33(6), 1-16. https://doi.org/10.1017/jmech.2017.85.
  19. Duan, Y., Wang, S. and Yau, J. (2018), "Vector form intrinsic finite element method for analysis of train-bridge interaction problems considering the coach-coupler effect", Int. J. Struct. Stab. Dynam., 1950014. https://doi.org/10.1142/S0219455419500147.
  20. Duan, Y.F., Zhang, R., Dong, C.Z., Luo, Y.Z., Or, S.W., Zhao, Y., and Fan, K.Q. (2016), "Development of Elasto-Magneto-Electric (EME) sensor for in-service cable force monitoring", Int. J. Struct. Stab. Dynam., 16(4), S68-S78. https://doi.org/10.1142/S0219455416400162.
  21. Duan, Y.F., Zhang, R., Zhao, Y., Or, S.W., Fan, K.Q. and Tang, Z. F. (2011), "Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel structures in railway infrastructures", J. Zhejiang Univ. -Sci. A, 12(12), 895-901. https://doi.org/10.1631/jzus.A11GT007
  22. Duan, Y.F., Zhang, R., Zhao, Y., Or, S.W., Fan, K.Q. and Tang, Z. F. (2012), "Steel stress monitoring sensor based on elastomagnetic effect and using magneto-electric laminated composite", J. Appl. Phys., 111(7), 68. https://doi.org/10.1063/1.3679420.
  23. Erhan, D., Bengio, Y., Courville, A. and Vincent, P. (2009), "Visualizing higher-layer features of a deep network", University of Montreal, 1341(3), 1.
  24. Fukushima, K. (1980), "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position", Biol. Cybern., 36(4), 193-202. https://doi.org/10.1007/BF00344251
  25. Guo, J., Xie, X., Bie, R. and Sun, L. (2014), "Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks", Personal & Ubiquitous Computing, 18(8), 1977-1987. https://doi.org/10.1007/s00779-014-0800-5
  26. He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification", International conference on computer vision, 1026-1034.
  27. Hubel, D.H. and Wiesel, T.N. (1968), "Receptive fields and functional architecture of monkey striate cortex", J. Physiology, 195(1), 215-243. https://doi.org/10.1113/jphysiol.1968.sp008455.
  28. Ioffe, S. and Szegedy, C. (2015), "Batch normalization: accelerating deep network training by reducing internal covariate shift", International conference on machine learning, 448-456.
  29. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S., Jung, H., Yun, C., Spencer, B.F. and Agha, G.A. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5), 439-459. http://dx.doi.org/10.12989/sss.2010.6.5_6.439.
  30. Jin, S., Cho, S., Jung, H., Lee, J. and Yun, C. (2014), "A new multi-objective approach to finite element model updating", J. Sound Vib., 333(11), 2323-2338. https://doi.org/10.1016/j.jsv.2014.01.015.
  31. Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Quarterly J. Roy. Meteorol. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707.
  32. Kim, H., Ahn, E., Shin, M. and Sim, S. (2018), "Crack and noncrack classification from concrete surface images using machine learning", Struct. Health Monit., 147592171876874. https://doi.org/10.1177/1475921718768747.
  33. Kim, J., Ho, D., Nguyen, K., Hong, D., Shin, S.W., Yun, C.B. and Shinozuka, M. (2013), "System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network", Smart Struct. Syst., 11(5), 533-553. http://dx.doi.org/10.12989/sss.2013.11.5.533.
  34. Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), ImageNet Classification with Deep Convolutional Neural Networks. Paper presented at the neural information processing systems.
  35. LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436. https://doi.org/10.1038/nature14539
  36. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R. E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Comput., 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
  37. Lee, J., Lee, J.W., Yi, J., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280(3), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003.
  38. Liang, Z.J., Liao, S.B. and Hu, B.Z. (2018), "3D convolutional neural networks for dynamic sign language recognition", Comput. J., 61(11), 1724-1736. https://doi.org/10.1093/comjnl/bxy049.
  39. Lin, Y., Nie, Z. and Ma, H. (2017), "Structural damage detection with automatic feature-extraction through deep learning", Comput.-Aided Civil Infrastruct. Eng., 32(12), 1025-1046. https://doi.org/10.1111/mice.12313.
  40. Matsuoka, K. (1992), "Noise injection into inputs in backpropagation learning", Syst. Man Cybernetics, 22(3), 436-440. DOI: 10.1109/21.155944.
  41. Midas (2017), MIDAS Information Technology Co., Ltd., Korea. http://www.MidasUser.com.
  42. Miikkulainen, R., Liang, J.Z., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A. and Duffy, N. (2017), Evolving Deep Neural Networks. arXiv: Neural and Evolutionary Computing, 293-312.
  43. Min, J., Park, S., Yun, C.B., Lee, C. and Lee, C. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity", Eng. Struct., 39, 210-220. https://doi.org/10.1016/j.engstruct.2012.01.012.
  44. Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. https://doi.org/10.1016/j.engstruct.2018.05.109.
  45. Scherer, D., Muller, A. and Behnke, S. (2010), Evaluation of pooling operations in convolutional architectures for object recognition, Paper presented at the international conference on artificial neural networks.
  46. Sekhar, A.S. (2004), "Crack identification in a rotor system: a model-based approach", J. Sound Vib., 270(4), 887-902. https://doi.org/10.1016/S0022-460X(03)00637-0.
  47. Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: Fundamentals and application to design, Book published by John Willey & Sons Inc, 605.
  48. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014), "Dropout: a simple way to prevent neural networks from overfitting", J. Mach. Learn. Res., 15(1), 1929-1958.
  49. Ting, E.C., Shih, C. and Wang, Y. (2004), "Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element", J. Mechanics, 20(2), 113-122. https://doi.org/10.1017/S1727719100003336.
  50. Wang, S.M. (2018), Dynamic analysis of wind-train-rail-long span bridge based on the vector form intrinsic finite element. Zhejiang University.
  51. Yim, J., Wang, M. L., Shin, S.W., Yun, C.B., Jung, H., Kim, J. and Eem, S. (2013), "Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges", Smart Struct. Syst., 12(3-4), 465-482. https://doi.org/10.12989/sss.2013.12.3_4.465.
  52. Yuan, X., Chen, C., Duan, Y. and Qian, R. (2018), "Elastoplastic analysis with fine beam model of vector form intrinsic finite element", Adv. Struct. Eng., 21(3), 365-379. https://doi.org/10.1177/1369433217718984.
  53. Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6.
  54. Zhang, P., Tang, Z., Duan, Y., Yun, C.B. and Lv, F. (2018), "Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable", Smart Struct. Syst., 22(4), 481-493. https://doi.org/10.12989/sss.2018.22.4.481.
  55. Zhang, R., Duan, Y., Or, S.W. and Zhao, Y. (2014), "Smart elastomagneto-electric (EME) sensors for stress monitoring of steel cables: design theory and experimental validation", Sensors, 14(8), 13644-13660. https://doi.org/10.3390/s140813644.
  56. Zhang, R., Duan, Y., Zhao, Y. and He, X. (2018), "Temperature compensation of Elasto-Magneto-Electric (EME) sensors in cable force monitoring using BP neural network", Sensors, 18(7), 2176. https://doi.org/10.3390/s18072176.

피인용 문헌

  1. Identification of Grout Sleeve Joint Defect in Prefabricated Structures Using Deep Learning vol.7, 2020, https://doi.org/10.3389/fmats.2020.00298
  2. Damage identification using deep learning and long-gauge fiber Bragg grating sensors vol.59, pp.33, 2019, https://doi.org/10.1364/ao.405110
  3. Structural Health Monitoring in Composite Structures: A Comprehensive Review vol.22, pp.1, 2019, https://doi.org/10.3390/s22010153